Assembling Planer Graphs to Service the Coloring Number.

- Author(s): Wafiq Hibi
- Abstract: The next question was asked in [6], if given three simple and planar graphs on the same set of vertices V, those they G_1:(V, E_1), G_2:(V, E_2) and G_3:(V, E_3), and let G:(V, E_1UE_2UE_3). Is it possible that $\chi(\mathrm{G})$ the chromatic number of G will be equal to 20 ? The answer was no, this result was obtained by proving that the graph is 19 - coloring. Here in this paper, I will expand this, and will give a general answer even if there are data more than 3 graphs. From the new result, we will deduce a better solution to the initial question, which the graph is 18 - coloring. Moreover, in [8], a proof was given of the following: For each 14-regular graph, there is a division $E=E _1 U E _2 U E _3$, so for each of the three graphs (V, E_1), (V, E_2), (V, E_3), the maximum degree will be at most five. Here, too, we will expand to d-regular graphs and get a general division.
- Keywords: d-regular graphs, general division, 14-regular graph

