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Abstract 

Objectives: This study sets up an ordinary differential model, SEAIR, analyzing the transmission dynamics 

of COVID-19, where human population is divided into five compartments: Susceptible (𝑆), Exposed (𝐸), 

Asymptomatic Infected (𝐴), Symptomatic Infected (𝐼), and Recovered (𝑅).  The final purpose would be to 

have a framework that helps in analysis of stability and conditions regarding the pandemic for both the disease-

free and endemic states. Methods: This SEAIR model is solved through equilibrium analysis in order to 

distinguish between the two equilibria-disease-free and endemic-states of the disease. Equilibrium conditions 

for the stability conditions are found using the ℛ0 number calculated by means of the next-generation matrix 

method to understand the likelihood of disease persistence. The dataset has been taken from the daily reports 

on the active COVID-19 cases in Channai, reported by the Governnment of Tamil Nadu. Numerical 

simulations of the SEAIR model is conducted by using the odeint function from the scipy.integrate library in 

Python. Model validation was achieved by fitting the SEAIR model to real COVID-19 data from Chennai, 

Tamil Nadu using optimization algorithms including Nelder-Mead, Differential Evolution, Genetic Algorithm, 

L-BFGS-B, Particle Swarm Optimization, and Powell's algorithm for parameter estimation. Findings: The 

model shows that when the number of new infectious cases from both asymptomatic and symptomatic 

individuals is below unity, the disease-free equilibrium is locally asymptotically stable. The model reaches and 

maintains an endemic equilibrium if the basic reproduction number is greater than unity. This model was fit to 

the observed data using several optimization algorithms used and thus showing a clear fit between the observed 

values and the modelled prediction. Novelty: This research presents an effective SEAIR model strong enough 

to explain COVID-19 transmission appropriately in urban settings and, therefore, represents an important 

resource to direct intervention in public health. 
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1. Introduction 
Compartmental models are the most useful in that they bring together very complex biological 

processes into mathematical frameworks which could be solved. Among those commonly used are the models 

SIR, Susceptible-Infectious-Recovered, and SEIR, Susceptible-Exposed-Infectious-Recovered. These models 

have had compartments added to them as better representations of the severity of certain diseases. One example 

is the SEAIR model: Susceptible-Exposed-Asymptomatic-Infected-Recovered, which became highly relevant 

in the context of COVID-19. The number of asymptomatic carriers was a major conduit of disease 

transmission. 

    Asymptomatic infection is an important feature that has been added to most researchers' versions of 

the SEIR model. Anastassopoulou et al. extended the SEIR model to an asymptomatic compartment, and they 

were able to demonstrate the role of asymptomatic carriers in the epidemic curve [1].  Giordano et al. 

developed an extended SEIR model including compartments for asymptomatic, diagnosed, and ailing 

individuals in order to capture the spread of COVID-19 in Italy better [2].  Another developed model includes 

asymptomatic infection besides public health interventions for enhanced consideration of the COVID-19 

disease transmission dynamics [3].  A different version of an SEIR model considers vaccination along with a 

few public health measures so as to predict the time- evolution dynamics of this disease [4].   The impact of 

mobility restrictions and vaccination in heterogeneous populations has been studied, which has highlighted the 

need for accounting for diversity in the population in modeling efforts [5].  A network-based approach has 

been used to model the effects of contact tracing and testing on the spread of COVID-19 [6]. 

Environmental variables including temperature and humidity have been assessed through Bayesian 

spatiotemporal, thereby enhancing the COVID-19 model complexity. An analysis regarding vaccination and 

booster doses, focusing on ongoing immunization efforts has also been reported [7].  Studies regarding Wuhan, 

China, analyze how public health measures affect controlling the spread of the virus [8].  Research has focused 

more on vaccination strategies. In this regard, models have been developed to examine age-specific vaccination 

strategies and their potential impact on transmission dynamics [9].  Models of COVID-19 transmissions in 

high-density urban areas have also been developed with consideration for social contact patterns and 

implemented public health measures [10].  Implications of vaccine coverage and effectiveness in rural settings 

have been discussed in [11].  Various booster doses have been accounted for in terms of transmission dynamics 

and control measures [12]. Vaccine hesitancy and public health measures among diverse populations have also 

been taken into consideration, based on the challenges related to universal immunity levels. [13] 

Parameter estimation is a major key to the accuracy of any epidemiological model. There are various 

optimization algorithms which have been used for efficient estimation of model parameters. The Nelder-Mead 

method, Differential Evolution, Genetic Algorithms, and other optimization techniques have been used for 

fitting models to real-world data. Wang et al. used L-BFGS-B algorithms to estimate parameters of the 

COVID-19 model from Wuhan, China; this fitted the data so well and provided reliable prediction results [14].  

Rabajante used Particle Swarm Optimization to estimate the parameters for an SEAIR model with COVID-

19; his study demonstrated the model as a good fit for dynamics in the disease [15]. 

The basic reproduction number (ℛ0) is a metric in epidemiological modeling representing the average 

number of secondary infections produced by an infectious individual in a fully susceptible population. There 

have been many studies on deriving ℛ0 for COVID-19 using different models. The next-generation matrix 

method was first proposed by Diekmann et al. as a standard approach for computing ℛ0 in compartmental 

models. [16] This approach has been widely applied to the COVID-19 models of determining the disease-free 

and endemic equilibria conditions. [17] 
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Asymptomatic carriers have a disproportionately large impact on the spread of COVID-19 since their 

infections are often asymptomatic. He et al. and Mizumoto et al. argued that asymptomatic transmission was 

a key component in the initial phases of the pandemic. [18], [19]   Their research illustrates the inclusion of 

such asymptomatic compartment in any epidemiological model is vital for reflecting realities appropriately. 

Modeling studies have highlighted the effective use of public health intervention measures such as 

social distancing, quarantine, and vaccines. Ferguson et al. applied an extended SEIR model to evaluate the 

impact of non-pharmaceutical measures on the spread of SARS-CoV-2 in the UK and in the US to inform 

policy for the pandemic period [20]. Similarly, Hellewell et al. and Prem et al. applied the compartmental 

models to discuss the effect of different interventional strategies on the COVID-19 transmission dynamics 

[21], [22]. Omede et al. have analyzed the Delta and Omicron variants of the virus within the United States 

[23].  Kim et al. have analyzed on the multi-variant model within an optimal control strategy for the control 

of the disease within Ghana [24]. Hu et al. assessed COVID-19 dynamics regarding stability within the United 

States [25], whereas Riaz et al. investigated a nonlinear model related to environmental and social influences 

on the pandemic in assessing pandemic control measures [26]. Zerefe et al. also studied contact tracing with 

regard to the transmission of COVID-19 in Ethiopia, demonstrating its effectiveness in controlling outbreaks 

[27]. 

The rest of the paper is structured as follows. In Section 2, we derive the SEAIR mathematical model 

and explain in detail each variable and parameter. In Section 3, we discuss the mathematical analysis of the 

model, including boundedness of the system, existence of equilibrium points, the basic reproduction number, 

and stability analysis of the equilibrium points. In Section 4, we apply COVID-19 data from Chennai, Tamil 

Nadu, collected between May 3, 2020, and August 7, 2022, to estimate the parameters such as the transmission 

rate, recovery rate, and the progression rate from exposed to infectious [28].  For the estimation, we applied 

six optimization algorithms: Nelder-Mead Algorithm, Differential Evolution Optimization, Genetic 

Algorithm, L-BFGS-B Algorithm, Particle Swarm Optimization, and Powell's Algorithm. We will then 

compare the estimated parameters and goodness-of-fit of each algorithm to gauge their accuracy. Finally, in 

Section 5, we will present our concluding remarks and some implications drawn from the paper. 

2. Methodology 

The mathematical model for COVID-19 transmission is a compartmental model that divides the total 

human population (𝑁) into five distinct compartments: Susceptible (𝑆), Exposed (𝐸), Symptomatic Infected 

(𝐼), Asymptomatic Infected (𝐴) and Recovered (𝑅) population as shown in the Figure 1.  Each compartment 

represents a different stage in the progression of the disease within the population. 

Figure 1. SEAIR Block Diagram: Dynamics of the model 
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Susceptible (𝑆) compartment includes individuals who have not yet been infected with COVID-19 but 

are at risk of infection upon contact with infected individuals. Exposed (𝐸) compartment consists of individuals 

who have been infected with COVID-19 but are not yet infectious belong to this compartment. This stage 

represents the incubation period. Symptomatic Infected (𝐼) compartment consists of individuals who are 

infected with COVID-19 and exhibit symptoms. These individuals are infectious and contribute to the 

transmission of the disease. Asymptomatic Infected (𝐴) includes individuals who are infected with COVID-

19 but do not exhibit symptoms. Despite the lack of symptoms, they are still infectious, although potentially 

less so than symptomatic individuals. Recovered (𝑅) compartment includes individuals who have recovered 

from the infection and gained immunity belong to this compartment. They are no longer infectious. 

The model is formulated as a system of nonlinear autonomous first-order differential equations that 

describe the rate of change of each compartment over time: 

 

{
 
 
 

 
 
 
𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝑆(𝐼 + 𝜅𝐴) − 𝑑𝑆

𝑑𝐸

𝑑𝑡
= 𝛽𝑆(𝐼 + 𝜅𝐴) − (𝜖 + 𝑑)𝐸

𝑑𝐴

𝑑𝑡
= 𝛿𝜖𝐸 − (𝛾′ + 𝑑)𝐴

𝑑𝐼

𝑑𝑡
= (1 − 𝛿)𝜖𝐸 − (𝛾 + 𝛼 + 𝑑)𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝛾′𝐴 − 𝑑𝑅

 (1) 

The parameters of the model are defined as follows: Λ represents the recruitment rate of new susceptible 

individuals into the population, 𝛽 is the transmission rate of the disease, and 𝜅 denotes the relative 

infectiousness of asymptomatic individuals compared to symptomatic individuals. The parameter 𝑑 is the 

natural death rate of individuals, while 𝜖 indicates the rate at which exposed individuals become infectious. 

The proportion of exposed individuals who become asymptomatic is denoted by 𝛿, and the recovery rates of 

symptomatic and asymptomatic infected individuals are represented by 𝛾 and 𝛾′, respectively. And, 𝛼 is the 

disease-induced death rate of symptomatic infected individuals. 

The model dynamics describe the changes in each compartment over time.  The susceptible population 

(𝑆) decreases due to new infections and natural deaths but increases with the recruitment of new individuals. 

The exposed population (𝐸) increases as susceptible individuals come into contact with the virus and transition 

into the exposed state. This compartment decreases as exposed individuals either progress to the infectious 

stages or die. The asymptomatic infected population (𝐴) grows as a proportion (𝛿) of exposed individuals 

develop asymptomatic infections and decreases as these individuals either recover or die. On the other hand, 

the symptomatic infected population (𝐼) increases as a proportion (1 − 𝛿) of exposed individuals develop 

symptoms. This compartment decreases due to recovery, disease-induced deaths, or natural deaths. The 

recovered population (𝑅) increases as infected individuals recover and decreases due to natural deaths. 

This model provides a detailed framework for understanding the transmission dynamics of COVID-

19, highlighting how various factors such as transmission rates, recovery rates, and natural deaths influence 

the progression and control of the disease within a population. 

3. Results and Discussion  

3.1 Boundedness of the system 
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Let 𝑋 = 𝑆 + 𝐸 + 𝐴 + 𝐼 + 𝑅. Differentiating this with respect to time and using Eq.(1), it is seen that 
𝑑𝑋

𝑑𝑡
≤ Λ− 𝑑𝑋 and by usual calculation, the solution of X is obtained as 𝑋 = 𝑋0𝑒

−𝑑𝑡 +
Λ

𝑑
(1 − 𝑒−𝑑𝑡) in the 

boundary and 𝑋 ≤ 𝑋0𝑒
−𝑑𝑡 +

Λ

𝑑
(1 − 𝑒−𝑑𝑡) in the interior, where 𝑋0 is the value of 𝑋 at the initial time. Thus, 

lim
𝑡→∞

𝑋(𝑡) ≤
Λ

𝑑
 and the vector field in the Euclidean Space ℝ+

5  described by the right-hand side of Eq.(1) is 

Lipschitz continuous in the region given by 𝑋 ≤
Λ

𝑑
. Hence it leads to the following theorem:  

Theorem 3.1 The solutions of the SEAIR model (1) are uniformly bounded for all time with initial condition 

lying in  

Γ = {(𝑆, 𝐸, 𝐴, 𝐼, 𝑅)  ∶   𝑆 ≥ 0, 𝐸 ≥ 0, 𝐴 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0, 𝑆 + 𝐸 + 𝐴 + 𝐼 + 𝑅 ≤
Λ

𝑑
}. 

Moverover, the compact region Γ is positively invariant with respect to system (1).  

 Thus the SEAIR model (1) is mathematically and epidemiologically well posed in the compact region 

Γ in the Euclidean Space ℝ+
5 , where Γ is given by  

Γ = {(𝑆, 𝐸, 𝐴, 𝐼, 𝑅)  ∶   𝑆 ≥ 0, 𝐸 ≥ 0, 𝐴 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0, 𝑆 + 𝐸 + 𝐴 + 𝐼 + 𝑅 ≤
Λ

𝑑
}. 

The region Γ is epidemiologically valid since the values of 𝑆, 𝐸, 𝐴, 𝐼, 𝑅 are all nonnegative and its total sum 

is bounded by the ratio between the immigration rate of humans and the natural death rate of population. 

3.2 Equilibria 

Equilibria points of any given system are the steady state solutions of the model, which can be classified 

into two, such as: diease-free equilibrium where the disease vanishes throughout the population, and endemic 

equilibrium point(s) where the disease exists and nonvanishes from the population. 

If 𝑃0 = (𝑆0, 𝐸0, 𝐴0, 𝐼0, 𝑅0) ∈ Γ be the disease-free equilibrium point of the SEAIR model (1), then it is 

tirivial that 𝑆0 =
Λ

𝑑
, 𝐸0 = 0, 𝐴0 = 0, 𝑇0 = 0 and 𝑅0 = 0. 

Let 𝑃∗ = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑅∗) denote an endemic equlibrium of the SEAIR model (1). Solving the 

equilibrium equations associated with (1) gives the following lemma: 

Lemma 3.1  There exists an endemic equlibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑅∗) for the SEAIR model (1), if 

the value of 𝐸∗ is non-negative, where 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗ and 𝑅∗ are given by 𝑆∗ =
𝛬

𝛽(
(1−𝛿)𝜖

𝛾+𝛼+𝑑
+
𝜅𝛿𝜖

𝛾′+𝑑
)𝐸∗+𝑑

,               

𝐴∗ =
𝛿𝜖

𝛾′+𝑑
𝐸∗, 𝐼∗ =

(1−𝛿)𝜖

𝛾+𝛼+𝑑
𝐸∗, 𝑅∗ =

𝜖

𝑑
(
𝛾(1−𝛿)

𝛾+𝛼+𝑑
+

𝛾′𝛿

𝛾′+𝑑
)𝐸∗ and 𝐸∗ =

𝛬

𝜖+𝑑
−

𝑑(𝛾+𝛼+𝑑)(𝛾′+𝑑)

𝛽((1−𝛿)𝜖(𝛾′+𝑑)+𝜅𝛿𝜖(𝛾+𝛼+𝑑))
.  

 It is observed from lemma 3.1 that if the value of 𝐸∗ is uniquely exist, then the existence of endemic 

equlibirum point is uniquely determined. 

3.3 Basic Reproduction Number  

The basic reproduction number, denoted by ℛ0, is defined as the number of new infectious prodcued 

by a typical infective individual in a population at a disease free equilibrium [29].  Biologically speaking, if 

the numberical value of ℛ0 is fewer than unity, then the spread of disease is un]der control and so the infection 

comes to end; and if the numerical value of ℛ0 is higher than unity, then spread of disease persists in the total 



       ©RIGEO, Volume 11, (12), Dec 2021    Review of International Geographical Education    
 

113 
 

population. The authors are adopted the next generation matrix method [16], to find the value of ℛ0 for the 

SEAIR model (1). 

The disease compartments in the SEAIR model (1) are 𝐸, 𝐴, 𝐼. The matrix ℱ of appearance of new 

infections and the matrix 𝒱 of diesease transition of individuals are given by  

 ℱ = [
𝛽𝑆(𝐼 + 𝜅𝐴)
0
0

] , 𝒱 = [

(𝜖 + 𝑑)𝐸

(𝛾′ + 𝑑)𝐴 − 𝛿𝜖𝐸
(𝛾 + 𝛼 + 𝑑)𝐼 − (1 − 𝛿)𝜖𝐸

]. 

The Jacobian of ℱ and 𝒱 at disease free equilibrium 𝑃0 = (
Λ

𝑑
, 0, 0, 0, 0) are, respectively, given by  

 𝐹 = [
0 𝛽𝜅

Λ

𝑑
𝛽
Λ

𝑑

0 0 0
0 0 0

]   and  𝑉 = [
𝜖 + 𝑑 0 0
−𝛿𝜖 𝛾 ′ + 𝑑 0
−(1 − 𝛿)𝜖 0 𝛾 + 𝛼 + 𝑑

] 

With direct calculation, it is found that the eigen values of the next generation matrix 𝐹𝑉−1 are 0, 0 and 
𝛽Λ

𝑑
(𝜅𝐴1 + 𝐴2), where 𝐴1 =

𝛿𝜖

(𝜖+𝑑)(𝛾′+𝑑)
 and 𝐴1 =

(1−𝛿)𝜖

(𝜖+𝑑)(𝛾+𝛼+𝑑)
. By next generation matrix method, the basic 

reproduction number, ℛ0, is defined by the spectral radius, 𝜌(𝐹𝑉−1), of the matrix 𝐹𝑉−1. Thus the basic 

reproduction number to the SEAIR model (1) is given by  

 ℛ0 = ℛ01 +ℛ02 =
𝛽Λ𝛿𝜖𝜅

𝑑(𝜖+𝑑)(𝛾′+𝑑)
+

𝛽Λ(1−𝛿)𝜖

𝑑(𝜖+𝑑)(𝛾+𝛼+𝑑)
 (2) 

 where ℛ01 and ℛ02 are the number of new infectious cases produced by an asymptomatical infected human 

and symptomatic infected human, respectively. It is noted that both ℛ01 < 1 and ℛ02 < 1 if ℛ0 < 1 but not 

vice versa. 

3.4 Stability Analysis  

In this section, we analyze the local stability of the disease-free equilibrium and the endemic 

equilibrium, when it uniquely exists, based on the threshold value ℛ0.  

Theorem 3.2  The disease-free equilibrium 𝑃0 = (
𝛬

𝑑
, 0, 0, 0, 0) of the SEAIR model (1) is locally 

asymptotically stable if both ℛ01 < 1 and ℛ02 < 1 but unstable if ℛ0 > 1.  

 Proof. The Jacobian matrix of the system (1) at the disease-free equilibrium 𝑃0 is  

 𝐽(𝑃0) =

[
 
 
 
 
 −𝑑 0 −𝛽𝜅

Λ

𝑑
−𝛽

Λ

𝑑
0

0 −(𝜖 + 𝑑) 𝛽𝜅
Λ

𝑑
𝛽
Λ

𝑑
0

0 𝛿𝜖 −(𝛾′ + 𝑑) 0 0
0 (1 − 𝛿)𝜖 0 −(𝛾 + 𝛼 + 𝑑) 0

0 0 𝛾 ′ 𝛾 −𝑑]
 
 
 
 
 

, (3) 

 and the corresponding characteristic equation is  

 (𝜆 + 𝑑)2(𝜆3 + 𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3) = 0, (4) 

 where  
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 𝐴1 = 𝜖 + 𝛾 + 𝛾 ′ + 𝛼 + 3𝑑 

 𝐴2 = (𝜖 + 𝑑)(𝛾
′ + 𝑑) + (𝜖 + 𝑑)(𝛾 + 𝛼 + 𝑑) + (𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑) − 𝛽𝜖

Λ

𝑑
(𝛿𝜅 + 1 − 𝛿) 

 𝐴3 = (𝜖 + 𝑑)(𝛾
′ + 𝑑)(𝛾 + 𝛼 + 𝑑) − 𝛽

Λ

𝑑
[𝛿𝜖𝜅(𝛾 + 𝛼 + 𝑑) + (1 − 𝛿)𝜖(𝛾′ + 𝑑)] 

 After simplification, 𝐴2 and 𝐴3 can be rewritten as  

 𝐴2 = (𝜖 + 𝑑)(𝛾
′ + 𝑑)(𝛾 + 𝛼 + 𝑑)(

1

𝜖+𝑑
+

1−ℛ01

𝛾+𝛼+𝑑
+
1−ℛ02

𝛾′+𝑑
) 

 𝐴3 = (𝜖 + 𝑑)(𝛾
′ + 𝑑)(𝛾 + 𝛼 + 𝑑)(1 − ℛ0) 

 It is clear that 𝐴1 > 0, 𝐴2 > 0 if both ℛ01 < 1 and ℛ02 < 1. and 𝐴3 > 0 if ℛ0 < 1. Finally,  

𝐴1𝐴2 − 𝐴3 = 2(𝜖 + 𝑑)(𝛾
′ + 𝑑)(𝛾 + 𝛼 + 𝑑) + (1 − ℛ01)(𝜖 + 𝑑)(𝛾

′ + 𝑑)(𝜖 + 𝛾′ + 2𝑑)                           

 +(1 − ℛ02)(𝜖 + 𝑑)(𝛾 + 𝛼 + 𝑑)(𝜖 + 𝛾 + 𝛼 + 2𝑑) + (𝛾
′ + 𝑑)(𝛾 + 𝛼 + 𝑑)(𝛾′ + 𝛾 + 𝛼 + 2𝑑) 

 > 0 if both ℛ01 < 1 and ℛ02 < 1 

By Routh-Hurwitz criterion, the roots of the cubic polynomial in Eq. (4) are all negative real part if and 

only if 𝐴1 > 0, 𝐴2 > 0, 𝐴3 > 0 and 𝐴1𝐴2 − 𝐴3 > 0, which will be happened only when both ℛ01 < 1 and 

ℛ02 < 1. And other two roots of Eq. (4) are −𝑑, −𝑑 which are negative. Thus all the eigen values for all 

possible parameter values if both ℛ01 < 1 and ℛ02 < 1. 

Theorem 3.3  The endemic equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑅∗) for the SEAIR model (1) is uniquely 

determined if ℛ0 > 1, where the coordinates of 𝑃∗ are given by  

 𝑆∗ =
Λ

𝑑ℛ0
 (5) 

 𝐸∗ =
Λ(ℛ0−1)

ℛ0(𝜖+𝑑)
 (6) 

 𝐴∗ =
Λ𝛿𝜖(ℛ0−1)

ℛ0(𝜖+𝑑)(𝛾
′+𝑑)

 (7) 

 𝐼∗ =
Λ(1−𝛿)𝜖(ℛ0−1)

ℛ0(𝜖+𝑑)(𝛾+𝛼+𝑑)
 (8) 

 𝑅∗ =
Λ(ℛ0−1)

𝑑ℛ0(𝜖+𝑑)
(
𝛾(1−𝛿)𝜖

𝛾+𝛼+𝑑
+

𝛾′𝛿𝜖

𝛾′+𝑑
) (9) 

 Proof. The existence of endemic equilibrium point is derived in Lemma 3.1. By substituting Eq.(2) 

into 𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗ and 𝑅∗ in Lemma 3.1, the values in Eq.(5 - 9) are eventually obtained and all are non-negative 

only if ℛ0 > 1. 

It is found from theorem 3.2 that the disease-free equilibrium is unstable when ℛ0 > 1; but in this case, 

the unique existence of endemic equilibrium is proved in theorem 3.3. To check the local stability of endemic 

equilibrium, the following lemma is established. 
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Lemma 3.2  The characteristic polynomial of the matrix 𝐽 = [

𝑎11 0 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
0 𝑎32 𝑎33 0
0 𝑎42 0 𝑎44

] is of the form 𝑥4 +

𝑎1𝑥
3 + 𝑎2𝑥

2 + 𝑎3𝑥 + 𝑎4, where 𝑎1 = −𝑡𝑟  𝐽, 𝑎2 = 𝐽1 + 𝐽2 + 𝐽3, 𝑎3 = −𝑎11(𝐽2 + 𝐽3) − 𝑎33𝐽3 − 𝐽4 and 𝑎4 =
det 𝐽 with  

 𝐽1 = 𝑎11(𝑎22 + 𝑎33 + 𝑎44) + 𝑎33𝑎44 

 𝐽2 = 𝑎22𝑎33 − 𝑎23𝑎32 

 𝐽3 = 𝑎22𝑎44 − 𝑎24𝑎42 

 𝐽4 = 𝑎44(𝑎11𝑎33 − 𝑎23𝑎32) + 𝑎21(𝑎13𝑎32 + 𝑎14𝑎42) 

Proof. The characteristic polynomial of the matrix 𝐽 is of the form det(𝐽 − 𝑥𝐼4) = 0, where 𝐼4 is the identity 

matirx of order 4. While expanding the determinant,  

 (𝑎11 − 𝑥)(𝑎22 − 𝑥)(𝑎33 − 𝑥)(𝑎44 − 𝑥) − 𝑎23𝑎32(𝑎11𝑎44 − (𝑎11 + 𝑎44)𝑥 + 𝑥
2) 

 −𝑎24𝑎42(𝑎11𝑎33 − (𝑎11 + 𝑎33)𝑥 + 𝑥
2) + 𝑎13𝑎21𝑎32(𝑎44 − 𝑥) + 𝑎14𝑎21𝑎42(𝑎33 − 𝑥) = 0; 

  

 𝑥4 + [−𝑎11 − 𝑎22𝑎33 − 𝑎44]𝑥
3 

 +[𝑎11𝑎22 + 𝑎11𝑎33 + 𝑎11𝑎44 + 𝑎22𝑎33 + 𝑎22𝑎44 + 𝑎33𝑎44 − 𝑎23𝑎32 − 𝑎24𝑎42]𝑥
2 

 +[−𝑎11𝑎22𝑎33 − 𝑎11𝑎22𝑎44 − 𝑎11𝑎33𝑎44 − 𝑎22𝑎33𝑎44 + 𝑎23𝑎32(𝑎11 + 𝑎44) 

 +𝑎24𝑎42(𝑎11 + 𝑎33) − 𝑎13𝑎21𝑎32 − 𝑎14𝑎21𝑎42]𝑥 + det𝐽 = 0; 

 By simple calculation, it is shown that  

 𝑥4 − 𝑡𝑟  𝐽𝑥3 + (𝐽1 + 𝐽2 + 𝐽3)𝑥
2 − [𝑎11(𝐽2 + 𝐽3) + 𝑎33𝐽3 + 𝐽4]𝑥 + det 𝐽 = 0. 

Theorem 3.4  The endemic equilibrium point 𝑃∗ = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑅∗) for the SEAIR model (1) is locally 

assymptotically stable if  ℛ0 > 1  

Proof. The Jacobian matrix of the system Eq. (1) at the endemic equilibrium point 𝑃∗ =

(𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑅∗) is given by  

 𝐽(𝑃∗) =

[
 
 
 
 
−𝛽(𝐼∗ + 𝜅𝐴∗) − 𝑑 0 −𝛽𝜅𝑆∗ −𝛽𝑆∗ 0

𝛽(𝐼∗ + 𝜅𝐴∗) −(𝜖 + 𝑑) 𝛽𝜅𝑆∗ 𝛽𝑆∗ 0

0 𝛿𝜖 −(𝛾′ + 𝑑) 0 0

0 (1 − 𝛿)𝜖 0 −(𝛾 + 𝛼 + 𝑑) 0
0 0 𝛾′ 𝛾 −𝑑]

 
 
 
 

 . 

It is clear that one of the eigen value of 𝐽(𝑃∗) is −𝑑, which is negative. To know the behaviour of other four 

eigen values of the system Eq. (1) at 𝑃∗, eliminating the fianl row and column, the existing matrix is of the 

form 𝐽 which is defined in the Lemma 3.2. Since the values of 𝛽(𝐼∗ + 𝜅𝐴∗) = (ℛ0 − 1)𝑑 and 𝑆∗ =
Λ

𝑑ℛ0
 the 

matix 𝐽 is of the form  
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 𝐽 =

[
 
 
 
 
 −ℛ0𝑑 0 −

𝛽𝜅Λ

𝑑ℛ0
−

𝛽Λ

𝑑ℛ0

(ℛ0 − 1)𝑑 −(𝜖 + 𝑑)
𝛽𝜅Λ

𝑑ℛ0

𝛽Λ

𝑑ℛ0

0 𝛿𝜖 −(𝛾′ + 𝑑) 0
0 (1 − 𝛿)𝜖 0 −(𝛾 + 𝛼 + 𝑑)]

 
 
 
 
 

. 

By simple calculations, the values of the identities in Lemma 3.2 are found to be  

 𝑎1 = (ℛ0 + 3)𝑑 + 𝜖 + 𝛾 + 𝛾
′ + 𝛼 > 0; 

 𝐽1 = ℛ0𝑑(𝜖 + 𝛾 + 𝛾𝛼
′ + 3𝑑) + (𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑) > 0; 

 𝐽2 = (𝜖 + 𝑑)(𝛾′ + 𝑑)(1 −
ℛ01

ℛ0
) ≥ 0; 

 𝐽3 = (𝜖 + 𝑑)(𝛾 + 𝛼 + 𝑑)(1 −
ℛ02

ℛ0
) ≥ 0; 

 𝐽4 =
ℛ01

ℛ0
(𝜖 + 𝑑)(𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑) − ℛ0𝑑(𝛾

′ + 𝑑)(𝛾 + 𝛼 + 𝑑) − (1 −
1

ℛ0
)ℛ01𝑑(𝜖 +

𝑑)(𝛾′ + 𝑑) − (1 −
1

ℛ0
)ℛ02𝑑(𝜖 + 𝑑)(𝛾 + 𝛼 + 𝑑) 

 Since 𝐽1 > 0, 𝐽2 ≥ 0 and 𝐽3 ≥ 0, 𝑎2 > 0.  

 𝑎3 = 𝑑(𝜖 + 𝑑)(𝛾′ + 𝑑)(ℛ0 − 1 +
ℛ02

ℛ0
) + 𝑑(𝜖 + 𝑑)(𝛾 + 𝛼 + 𝑑)(ℛ0 − 1 +

ℛ01

ℛ0
) 

 +𝑑(𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑)ℛ0 

 > 0 if  ℛ0 > 1; 

 𝑎4 = 𝑑(𝜖 + 𝑑)(𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑)(ℛ0 − 1) 

 > 0 if  ℛ0 > 1; 

 𝑎1𝑎2 − 𝑎3 = (1 −
1

ℛ0
)𝛽Λ𝜖(𝛿𝜅 + 1 − 𝛿) 

 > 0 if  ℛ0 > 1; 

 Finally,  

 𝑎1𝑎2𝑎3 − 𝑎3
2 − 𝑎1𝑎4 = 𝑎3(𝑎1𝑎2 − 𝑎3) − 𝑎1𝑎4 

 = {(ℛ0 − 1)(𝛾
′ + 𝛾 + 𝛼 + 2𝑑) + (𝛾′ + 𝑑)

ℛ02

ℛ0
+ (𝛾 + 𝛼 + 𝑑)

ℛ01

ℛ0
)}𝑑(𝜖 + 𝑑)(𝑎1𝑎2 − 𝑎3) 

 +(ℛ0 − 1)𝑑
2(𝜖 + 𝑑)(𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑)(ℛ02(𝛾

′ + 𝑑) + ℛ01(𝛾 + 𝛼 + 𝑑)) 

 +ℛ0
2𝑑(𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑)(𝛾′ + 𝛾 + 𝛼 + 2𝑑)(𝜖 + 𝑑 + 𝛾′𝑑 + 𝛾𝑑 + 𝛼𝑑 + 2𝑑2) 

 +ℛ0𝑑(𝜖 + 𝑑)(𝛾
′ + 𝑑)(𝛾 + 𝛼 + 𝑑) 

           ((𝜖 + 𝑑 + ℛ0𝑑)(ℛ0𝑑 − 1) + (𝛾
′ + 𝑑)(𝛾 + 𝛼 + 𝑑) + (𝜖 + 𝑑)(𝛾′ + 𝑑)

ℛ01

ℛ0
) 

 +ℛ0𝑑(𝛾
′ + 𝑑)(𝛾 + 𝛼 + 𝑑)(𝛾′ + 𝛾 + 𝛼 + 2𝑑) 
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           (ℛ0
2𝑑2 + (𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑) + (𝜖 + 𝑑)(𝛾 ′ + 𝑑)

ℛ01

ℛ0
) 

 +ℛ0𝑑
2(𝜖 + 𝑑)(𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑) 

 +𝑑(𝜖 + 𝑑)(𝛾′ + 𝑑)(𝛾 + 𝛼 + 𝑑)(𝜖 + 𝛾′ + 𝛾 + 𝛼 + 3𝑑)) 

 > 0 if  ℛ0 > 1. 

Thus, by Routh-Hurwitz criterion, the endemic equilibrium point 𝑃∗ for the SEAIR model (1) is locally 

assymptotically stable if ℛ0 > 1. 

The theorems 3.2 and 3.4 together convey that the behavior of the SEAIR model hinges on the basic 

reproduction number, ℛ0. When ℛ0 is less than 1, the disease-free equilibrium is stable, indicating that the 

disease will eventually be eradicated from the population. However, when ℛ0 exceeds 1, the disease-free state 

becomes unstable, and the system shifts towards the endemic equilibrium, where the disease persists in the 

population at a constant level. Thus, ℛ0 serves as a critical threshold determining whether the disease will die 

out or become endemic. 

3.5 Parameter Estimation using the Nelder-Mead Algorithm 

Parameters for this model were estimated using the Nelder-Mead optimization algorithm, a simplex-

based minimization technique of a nonlinear function without using derivative information. 

The dataset used in the fitting of the SEAIR model was the reported active cases of COVID-19 in Chennai 

over a given time period. The parameters to be estimated were the transmission rate (𝛽), the recovery rate (𝛾), 

and the progression rate from exposed to infectious (𝜎). 

The SEAIR model is defined using a system of ODEs and solved by means of the solve_ivp function 

from the scipy.integrate library. The Nelder-Mead algorithm has minimized the given loss function: the sum 

of the squared errors of observed active cases with that of infectious cases calculated based on the SEAIR 

model.  The parameters are initiated by setting up [0.5, 0.1, 0.2] for 𝛽, 𝛾 and 𝜎 in turn. Nelder-Mead 

optimization could be applied from the minimize function in scipy's optimize library. Using Nelder-Mead 

algorithm allowed determining correct values for SEAIR model parameter values. The estimated parameters 

are given as follows: 𝛽 = 0.352, 𝛾 = 0.119 and 𝜎 = 0.183.  The SEAIR model using these estimated values 

is solved, and active case numbers are compared for both predicted and observed datasets. The observed and 

the redicted number of active cases in relation to days have been plotted in Figure 2. 

Figure 2. SEAIR Model Fitting to COVID-19 Data (Nelder-Mead Optimization) 
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Assuming 𝛽 =  0.352, this would translate to a very high rate of disease transmission. With 𝛾 =  0.71 

and 𝜎 =  0.113 in the ranges of expected values, the model is plausible for describing disease dynamics. 

Goodness-of-fit between the model predictions and observed data was used to test the assumptions. 

The fit of the model was studied by the coefficient of determination, 𝑅2, and root mean squared error, 𝑅𝑀𝑆𝐸. 

The fitted model was very good for the observed data with 𝑅2  =  0.82 and 𝑅𝑀𝑆𝐸 =  3.7. In short, the disease 

progression was captured very well by the SEAIR model with Nelder-Mead optimized parameters. 

3.6 Parameter Estimation using Differential Evolution Optimization 

Optimization For the estimation of model parameters, used Differential Evolution (DE) optimization, 

a global optimization technique that is effective for solving complex, nonlinear problems. 

The scipy.integrate library is used with the odeint function in order to solve the SEAIR model. The loss 

function minimized by the DE was the sum of squared errors between the observed and predicted infected 

cases. The bounds set for the parameters were between 0 and 1. The differential_evolution function from the 

scipy.optimize library was used to implement the DE algorithm. 

Optimal parameters of the SEAIR model have been found with the help of the DE algorithm. Estimated 

values of the parameters are 𝛽 = 0.317, 𝛾 = 0.173 and 𝜎 = 0.236. With these estimated values, the SEAIR 

model has been solved, and its comparison has been done with the available data for infected cases. Figure 3 

describes the observed and predicted cases at different time points.  

Figure 3. SEAIR Model Fitting to COVID-19 Data (Differential Evolution Optimization) 
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The transmission rate, 𝛽, was approximately estimated at 0.317. This is a relatively moderate rate of 

spreading of the disease.  Recovery and the progression rate from the exposed state to an infectious one were 

reasonable and around expected ranges, showing the plausibility of the model built. 

To check the goodness-of-fit, we compared the model predictions with the observed data. We evaluated 

the fit of the model by coefficient of determination (𝑅2) and root mean squared error (𝑅𝑀𝑆𝐸). The model 

provided a good fit to the observed data with an 𝑅2 value of 0.84 and an 𝑅𝑀𝑆𝐸 of 4.2, which showed that the 

SEAIR model with DE-optimized parameters correctly captured the disease progression. 

3.7 Parameter Estimation using Genetic Algorithm 

Parameters of the SEAIR model were estimated using a Genetic Algorithm (GA), that essentially is a 

search heuristic whose aim is to represent this process of natural evolution.  The SEAIR model applied was 

defined as a system of ODEs and solved applying the solve_ivp library from scipy.integrate library.  The 

Genetic Algorithm used for minimization of the sum of the squared errors between active case observations 

and infectious model cases prediction is defined by The following was set as initial guesses for the parameters: 

𝛽 =  0.5, 𝛾 = 0.1, 𝜎 =  0.2 Inverse values are also within bounds set to (0.0001, 5), the upper value of 1 to 

keep 𝜎 and 𝛾 smaller as their maximum. 

Optimization of GA made use of the minimize function of the scipy.optimize library using the 'L-

BFGS-B' method for bounded optimizations. 

The GA successfully identified the best parameter estimates of the SEAIR model. Estimated parameters 

through Genetic Algorithm Optimization are 𝛽 = 0.439, 𝛾 = 0.129 and 𝜎 = 0.271. Using these estimated 

parameters, the solved SEAIR model was then compared with the observed data. Figure 4 illustrates the 

observed and predicted active cases over time.  

Figure 4. SEAIR Model Fitting to COVID-19 Data (Genetic Algorithm Optimization) 
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The estimated transmission rate (𝛽) is 0.439, which suggests a high rate of disease spread. Both the 

recovery rate (γ) and the progression rate from exposed to infectious (𝜎) fall within expected ranges, so the 

model of disease dynamics should be realistic.  Compare model predictions with observed data in order to 

assess the goodness-of-fit.  Fit of the model was estimated through the coefficient of determination, 𝑅2and 

root mean squared error, RMSE. The model was seen to be a good fit for the observed data as its 𝑅2 was 0.89 

and the 𝑅𝑀𝑆𝐸 was 1.3, showing that the SEAIR model with parameters optimized using GA was accurate 

enough in capturing the progression of the disease.  

3.8 Parameter Estimation using L-BFGS-B Algorithm 

To estimate the parameters of SEIAR model, used the L-BFGS-B algorithm. The SEAIR model was 

solved using the odeint function from the scipy.integrate library.  The loss function minimized by the L-BFGS-

B algorithm was the sum of squared errors between the observed active cases and the model-predicted 

infectious cases. The initial guess for the parameters was set to [0.2, 0.1, 0.1] for 𝛽, 𝛾 and 𝜎, respectively. 

The L-BFGS-B optimization was run using the minimize function from scipy.optimize.  The L-BFGS-B 

algorithm found the optimal parameter values for the SEAIR model. 

The best-fit parameters estimated by the L-BFGS-B Optimization are 𝛽 = 0.241, 𝛾 = 0.124 and 𝜎 =

0.179. Using the estimated parameters, the SEAIR model was solved, and predicted active cases were 

compared with the observed data. Figure 5 presents observed and predicted active cases in time. 

Figure 5. SEAIR Model Fitting to COVID-19 Data (L-BFGS-B Optimization) 
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The estimated transmission rate, 𝛽 =  0.241 is moderate, and recovery rate 𝛾 =  0.197 and 

progression rate from exposed to infectious 𝜎 =  0.303 are in reasonable ranges, thus the model seems 

realistic for describing the dynamics of the disease. 

To understand the goodness-of-fit, made a decision to compare the predictions of the model with the 

actual data.  The goodness of fit was determined using the coefficient of determination, 𝑅2 and root mean 

squared error (𝑅𝑀𝑆𝐸). The value of 𝑅2 was found to be 0.83 and 𝑅𝑀𝑆𝐸 was found to be 4.2.  SEAIR model 

with optimized parameters from L-BFGS-B fitted well with the observed trend of disease progression. 

Adaptive algorithms might be combined for real-time estimation of the model parameters because they would 

automatically update on the receipt of new information. Thus, this parameter estimation process is further 

improved in conjunction with real-time estimations, ensuring interventions by the public health entities are 

also more precise and timely. 

3.9 Parameter Estimation using Particle Swarm Algorithm 

Particle Swarm Optimization is an evolutionary computation technique, inspired by social behavior. 

Typically, it comes in useful for optimizing complex functions. Here, the loss function to be minimized by 

PSO is just the sum of squared errors between observed active cases and the model's predicted infectious cases. 

Parameter 𝛽, 𝛾, 𝜎 was bounded within [0,1]. 

The PSO optimization was done using the pso function from the pyswarm library. The PSO algorithm 

was able to find the optimal parameter values for the SEAIR model. The estimated parameters using Particle 

Swarm Optimization are 𝛽 = 0.374, 𝛾 = 0.114 and 𝜎 = 0.178.  The SEAIR model with these estimated 

parameters was solved and the predicted number of active cases was compared with the observed data. Figure 

6 shows the observed and predicted active cases over time. 

Figure 6. SEAIR Model Fitting to COVID-19 Data (Particle Swarm Optimization) 



       ©RIGEO, Volume 11, (12), Dec 2021    Review of International Geographical Education    
 

122 
 

 

    The transmission rate, 𝛽 =  0.374, indicates a high rate of disease spread. The recovery and 

progression from exposed to infectious 𝜎 are well within bounds, indicating a good model of the disease 

dynamics. 

The coefficient of determination 𝑅2 and root mean squared error 𝑅𝑀𝑆𝐸 measures were employed to 

assess the goodness of fit of the model with respect to observed data.  𝑅2 = 0.85 and 𝑅𝑀𝑆𝐸 = 3.9 indicated 

that the SEAIR model with optimized parameters of PSO could approximate disease progression. Another 

improvement for real-time parameter estimation includes the integration of adaptive algorithms that update 

parameters based on new data. This would make public health interventions even more accurate and 

responsive. 

3.10 Parameter Estimation using Powell’s Algorithm 

The main objective is to estimate the relevant epidemiological parameters using Powell's optimization 

algorithm. Powell's method is a conjugate direction method and has been shown to be specifically 

advantageous for the optimization of functions which use no derivative information.  The loss function in 

Powell's algorithm was the sum of the squared errors between observed active cases and the model-predicted 

infectious cases. The initial conditions defined only the total population size with 𝑁 = 1,000,000, and the 

intial values for 𝑆, 𝐸, 𝐼, and 𝑅 were set according to the dataset. The bounds for the parameters were not 

defined in Powell's method as it is a direction set method that does not need bounds. Initial guess for the 

parameters was taken as [0.2, 0.1, 0.1]. 

Powell's algorithm optimized the value of the parameter for the SEAIR model. By using the Powell's 

Algorithm, 𝛽 = 0.396, 𝛾 = 0.131 and 𝜎 = 0.164 were determined. The SEAIR model with this estimated 

parameter was solved and compared with the number of active cases observed data. Figure 7 shows the 

observed and predicted active cases of COVID-19 against time. 

Figure 7. SEAIR Model Fitting to COVID-19 Data (Powell’s Optimization) 



       ©RIGEO, Volume 11, (12), Dec 2021    Review of International Geographical Education    
 

123 
 

 

An estimated value of 𝛽 =  0.396 establishes a moderate transmission rate. The recovery rate, γ, and 

the rate of progression from exposed to infectious, 𝜎, are both in expected ranges, which indicates that the 

model is fairly realistic about disease dynamics. 

Goodness-of-fit was compared between the model predictions and the data observed by using 𝑅2 and 

𝑅𝑀𝑆𝐸 for assessment of the model fit. The SEAIR model with the help of Powell's algorithm resulted in a 

reasonable fit on the observed data, with an 𝑅2 of 0.87 and an 𝑅𝑀𝑆𝐸 of 2.5, stating that the SEAIR model had 

captured the disease's progression very aptly. 

3.11 Comparison of Optimization Algorithms 

Recent research has highlighted the effectiveness of various optimization algorithms, including Nelder-

Mead, Differential Evolution, Genetic Algorithm, L-BFGS-B, Particle Swarm Optimization, and Powell's 

Algorithm, in solving complex problems across different domains.  For instance, Paramonov et al. 

benchmarked Differential Evolution and the Nelder-Mead method for determining parameters of the line-start 

permanent magnet synchronous motor, which is showed that the computational efficiency of such a context 

was more potent using the Nelder-Mead method [30].  Zhang and Wang introduced self-adaptive Differential 

Evolution to solve multi-objective optimization problems and showed its robust performance on benchmark 

problems [31]. A genetic algorithm optimized time-varying parameters in a compartmental model, improving 

the predictive accuracy of the pandemic dynamics of COVID-19 [32].  L-BFGS-B was adopted to optimize 

fractional-order differential equations that represented COVID-19 vaccination hesitancy models, which 

estimated parameters accurately [33].  Particle swarm optimization efficiently forecasted the death counts due 

to the pandemic [34].  A hybrid Jaya-Powell algorithm was adopted for robust parameter estimation on the 

Lorenz chaotic system [35]. 

In this study, the six optimization algorithms, named as, Nelder-Mead, Differential Evolution, Genetic 

Algorithm, L-BFGS-B, Particle Swarm Optimization, and Powell's Algorithm has been applied to study the 

transmission dynamics of COVID-19 in Chennai, Tamil Nadu, by using the SEIAR model given in Eq.(1).   

The effectiveness of six optimization algorithms is also discussed while estimating parameters for the SEAIR 

model applied to the city of Chennai during the COVID-19 pandemic. For each algorithm, the aim is to 
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estimate the parameters 𝛽 (transmission rate), 𝛾 (recovery rate), and σ (progression rate from exposed to 

infectious) by minimizing the square of errors between the observed and model-predicted active cases. The 

performance of each algorithm is compared in terms of estimating the parameters and the goodness-of-fit 

metrics like 𝑅2  and 𝑅𝑀𝑆𝐸.  

A comparison of optimization algorithms showed that Genetic Algorithm had the best performance, 

with an 𝑅² of 0.89 and an 𝑅𝑀𝑆𝐸 of 1.3. These values indicated that this genetic algorithm captured significant 

variance in the data while keeping the error minimal, showing it to be a very effective optimization algorithm 

for models requiring high accuracy. The strong 𝑅² value suggested that this algorithm is closely aligned with 

the underlying data patterns, enhancing its applicability in scenarios requiring accurate estimations. 

Powell's Algorithm is a very closed substitute with an 𝑅² of 0.87 and an 𝑅𝑀𝑆𝐸 of 2.5 which is closed 

to that of the Genetic Algorithm, and its 𝑅𝑀𝑆𝐸 is a bit higher, though a good trade-off between precision and 

error made it feasible in a whole lot of situations whereby the increase of the error is tolerable.  Thus it came 

handy where minimal error fluctuations can be sustained without much impact on the results, therefore it is 

quite efficient. 

Particle Swarm Optimization has achieved an 𝑅² of 0.85 with an 𝑅𝑀𝑆𝐸 of 3.9 which is represented the 

relationships between the data fairly well but has higher prediction errors than the best algorithms. It is got 

into moderate accuracy, but high 𝑅𝑀𝑆𝐸 restricted its use in scenarios demanding minimum error. 

Differential Evolution and L-BFGS-B are the moderate performers, with 𝑅𝑀𝑆𝐸s of 4.2, with 𝑅² of 

0.84 and 0.83, respectively.  It is of fair accuracy but the model is less ideal for precision-focued due to the 

higher 𝑅𝑀𝑆𝐸 value. 

The Nelder-Mead algorithm showed relatively lower performance, with an 𝑅² of 0.82 and an 𝑅𝑀𝑆𝐸 

of 3.7, with limited data variance capture and a relatively higher error. It might be enough in very minor 

applications but not fit enough in more accurate applications. 

This analysis conclude that the genetic algorithm is more favorable, as it hold accuracy that is very 

high, less error; a very close alternative is the Powell's Algorithm because at a time of computing 

simplification, this must precede. This analysis illustrated that this approach as one which is widely effective 

in all types of applications in the aspects of research, precision, and the minimization of errors. 

4. Conclusion 

The SEAIR mathematical model developed to analyze COVID-19 transmission dynamics in Chennai, 

Tamil Nadu, establishes crucial insights into the disease’s spread within the region. The uniform boundedness 

of the model ensures its mathematical and epidemiological robustness within a compact operational range. 

This framework not only validates the existence of disease-free and endemic equilibrium points but quantifies 

the basic reproduction number, ℛ0, through the comprehensive next generation matrix method. Specifically, 

ℛ0 is computed as the combined impact of new infectious cases from asymptomatic and symptomatic 

individuals (ℛ01 and ℛ02, respectively). 

Mathematically, a model formulated about analyzing the transmission dynamics of Covid-19 in 

Chennai and Tamil Nadu shows considerable results about the spreading of a disease in that location, and thus 

it is supported by uniform boundedness also, that provides mathematical well-being as well as for 

epidemiological fitness within operational range. The framework finds existence of the disease-free and 
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endemic equilibrium points of the system. It explicitly computes the basic reproduction number, ℛ0, adopting 

detailed next generation matrix. ℛ0 is defined as the aggregate effect of newly diagnosed infectious cases 

originating from both asymptomatic and symptomatic individuals, designated as ℛ01 and ℛ02, respectively. 

Moreover, stability analysis at the disease-free equilibrium makes the disease plausible provided that 

both ℛ01 and ℛ02 are less than unity; that is, the disease transmission is in control.  However, in case of ℛ0 >

1, then it is unstable, implying uncontrolled spread. Provided that ℛ0 > 1, the model uniquely determines an 

endemic equilibrium point whose stability is rigorously proven using the Routh-Hurwitz criterion. 

Compared with the results from the six algorithms, the Genetic Algorithm resulted with the highest 

accuracy for all methods of optimization as it gave an 𝑅² value of 0.89 and the smallest value of 𝑅𝑀𝑆𝐸 which 

was being 1.3, while Powell's Algorithm presented as a good alternative in the yielding of an 𝑅² of 0.87 and 

𝑅𝑀𝑆𝐸 of 2.5. The other algorithms are Particle Swarm Optimization, Differential Evolution, L-BFGS-B, and 

Nelder-Mead. These algorithms' accuracy is declining with greater error rates. Therefore, the Genetic 

Algorithm was proved to yield the best results for those applications that call for high precision and less 

prediction error. 

This study have the following ciritcal limitations: A very elementary version of the SEAIR model of 

disease dynamics may not contain many complexities that are perhaps associated with the spread of COVID-

19. Thus, this SEIAR model is confined and carried out to the city of Chennai, Tamil Nadu. Therefore, it may 

not be generalizable in other regions or populations with different demographic, social, and health 

characteristics. The critical factors of vaccination rates, emergence of new variants, and alterations in public 

health interventions have not been taken into consideration in this study. Besides that, the model relies on a 

single dataset that would miss variations in data quality and reporting over time.  There is no validation of 

model predictions against out-of-sample data or future outcomes, which are critical for testing the robustness 

and reliability of the model's estimates.. The uncertainty in the estimates of parameters is not handled and, 

hence, the construction of confidence intervals is not involved. The model needs further research to be more 

robust and applicable for various contexts.  

Further research should focus on the following details to facilitate better comparison of algorithms: 

1. Robustness testing:  Repeatedly run the same algorithm under different initial guesses and with 

different subsets of data to prove that it is running reliably. 

2. Computational Efficiency: The computational efficiency of each algorithm regarding both 

convergence rates and computational costs in regards to real-time feasibility should be analyzed. 

3. Extended Models: Generate more sophisticated models that provide in one go considerations of 

spatial heterogeneity, age-structured compartments, and fluctuating contact rates. 

4. Adaptive Optimization: Explore adaptive optimization algorithms that can update parameters in real-

time as new data becomes available, improving the model’s responsiveness to changing epidemic dynamics. 

5. Hybrid Methods: Identify hybrid optimization algorithms that combine the strengths of different 

algorithms, potentially enhancing both accuracy and performance. 

6. Sensitivity Analysis: Carry out sensitivity analysis to see how difference in parameters affects model 

predictions and the drivers of disease dynamics. 
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By focusing on such domains, subsequent studies could result in a better understanding of the pros and 

cons with respect to different optimization algorithms used in epidemiological modeling, thus enhancing the 

precision and relevance of the predictions of models related to infectious diseases. Further researches must 

continue to refine such techniques and explore advanced optimization approaches to strengthen the robustness 

of predictive modeling paradigms. 
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