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ABSTRACT 

 

Electrification of transportation systems is increasing, in particular city buses raise enormous 

potential. Deep understanding of real-world driving data is essential for vehicle design and 

fleet operation. Various technological aspects must be considered to run alternative powertrains 

efficiently. Uncertainty about energy demand results in conservative design which implies 

inefficiency and high costs. Both, industry, and academia miss analytical solutions to solve this 

problem due to complexity and interrelation of parameters. Precise energy demand prediction 

enables significant cost reduction by optimized operations. This paper aims at increased 

transparency of battery electric buses’ (BEB) energy economy.We introduce novel sets of 

explanatory variables to characterize speed profiles, which we utilize in powerful machine 

learning methods. We develop and comprehensively assess 5 different algorithms regarding 

prediction accuracy, robustness, and overall applicability. Achieving a prediction accuracy of 

more than 94%, our models performed excellent in combination with the sophisticated 

selection of features. The presented methodology bears enormous potential for manufacturers, 

fleet operators and communities to transform mobility and thus pave the way for sustainable, 

public transportation. 

 

I.INTRODUCTION  

 

Traffic causes approximately 25% of greenhouse gas (GHG) emissions in Europe, and this 

percentage is increasing [1]. Therefore, widespread electrification of the mobility sector is one 

of the most positive actions that can be taken in relation to climate change and sustainability 
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[2], [3]. It seems clear that electric buses, because of their low pollutant emissions, are set to 

play a key role in the public urban transportation of the future. Although the initial investment 

in electrification  may be high - e.g. purchase costs of BEBs are up to twice as high as those of 

Diesel buses [4] - it is quickly amortized because the inherent efficiency of electric vehicles far 

exceeds that of internal combustion engine vehicles (up to 77% [5]) and thus operational 

respectively life cycle costs are significantly lower [6]. In addition, electrification of the power 

train brings many other advantages, such as a reduced noise level or pollution [7]–[10]. On the 

downside, the battery charging time of an electric bus is significantly longer than the refueling 

time of a diesel bus, while the opposite is true for the range [11]. Ultimately, widespread 

electrification of the mobility sector is one of the most positive actions that can be taken in 

terms of climate change and sustainability, but more research is needed to ensure efficient 

operation, as it also poses significant challenges.  

               The starting point for this study was a problem proposed by Seville’s public bus 

operator. In short, they wanted to replace their diesel fleet with all-electric vehicles, but first 

they had to size the vehicles’ batteries and determine the best charging locations around the 

city. In practice, this means using computers to predict consumption on each route [12]. 

Unfortunately, this can currently only be done with complex physical models that require long 

simulation times, or with  data-driven models that are less computationally intensive once 

trained, but require numerous driving, mechanical, and road measurements as inputs (see 

Section I-A). This is where the present research comes in. In this paper we use the bus 

operator’s database and a physics-based model of soon-to be- deployed electric buses to 

develop data-driven models that predict the energy requirements of the vehicles. Amongst 

others, what distinguishes our contribution from previous data driven approaches is the small 

number of physical variables involved: we show that, to accurately predict the consumption on 

a route using machine learning, we only need to know the instantaneous speed of the vehicle 

and the number of passengers on the bus. Specifically, our approach consists of three steps: 

             1) We calculate the energy consumed by the bus on each route using a physics-based 

model, validated by the vehicle manufacturer, that uses speed and mass as inputs, including the 

bus’s own weight and the weight of its payload. Both variables are taken from the operator’s 

database. 

              2) We extract a comprehensive set of time and frequency features from the speed 

signal. 

              3) We train machine learning regression models to predict the energy consumption 

from bus payload mass and the above set of features, and identify those with the best predictive 
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value. Interestingly, the feature that turns out to be the most relevant, i.e., the spectral entropy 

of velocity, has so far gone unnoticed in this field of research. 

          Ultimately, our results are useful for planning the transition from a conventional to a 

green bus fleet, and even for adding new functionalities that will be useful to planners: for 

example, the algorithms may be run on the battery management systems to provide an 

alternative way of monitoring the current state of charge of the batteries.  

                The paper is structured as follows. First, we identify the challenges in this field and 

review the state of the art in section I. Secondly, our material, methodology and methods are 

explained in Section II. Experimental results are presented and discussed in section III. Finally, 

section IV concludes our paper and shows possible future developments. 

 

II. EXISTING SYSTEM  

The prediction of energy demand for battery electric vehicles (BEVs) in general, and battery 

electric buses (BEBs) in particular, have been thoroughly investigated. This is not surprising, 

as [13] shows that BEBs are a viable replacement for conventional vehicles and are also less 

sensitive to variations in mission profiles than diesel buses. It is important to note also that the 

duty cycle and driving conditions of a BEB are very different from those of other BEVs, 

shifting the focus from kinematic relationships to route, schedule, and passenger load. 

The majority of previous studies utilize complex physics based  vehicle models, though they 

vary in focus and objective [14]–[21]. In [14], for example, the authors examine the impact of 

power train efficiency, rolling resistance,  and auxiliary power on the energy consumption of 

battery electric vehicles (BEVs). While drive train efficiency and rolling resistance are relevant 

to the physical movement of the vehicles, auxiliary power demand is especially important at 

the lower speeds (< 40 km/h) where city buses typically operate, motivating the need for 

accurate knowledge of auxiliary power to predict overall energy consumption. The study of De 

Cauwer et al. [15] integrates a physical model of the vehicle and a data-driven methodology 

with the aim to detect and quantify correlations between the kinematic 

parameters and the vehicle’s energy consumption. Commonly used kinematic parameters are 

complemented by additional factors such as the travel distance and time or the temperature.  

Wang et al [17] studied the influence of rolling resistance, which depends on the road surface, 

as well as various weather conditions, on power demand. The prediction model in [18] consists 

of a longitudinal dynamics model complemented by additional dedicated measurements from 

a dynamometer, as well as coastdown tests, to reduce the model’s uncertainty. Similarly, in 

[21] the authors introduce a novel and computationally efficient electro-mechanical model of 
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a BEB to study the influence of factors such as payload mass, temperature and rolling resistance 

on consumption. All these approaches provide valuable insight on the interrelation of factors 

of 

influence; nevertheless, they involve intricate equations and require accurate modeling of the 

vehicles and their components to generate results. Like all physics-based models, they are of 

limited practical use due to the long simulation times. In addition, most previous research has 

focused primarily on light-duty vehicles, and scaling to the heavy-duty class is complex due to 

completely different driving profiles and dynamics. 

Data-driven approaches, which use machine-learning or deep learning algorithms and real-

world driving data, or even mixed data-driven and physics-based approaches, can be found in 

[22]–[35]. For example, Chen et al. [22] review state of the art energy-consumption estimation 

models (rulebased vs. data-driven) for electric vehicles and study the case of electric buses 

using logistic regression and neural networks on real-world data. Additionally, they identify 

the research gap for energy consumption models of heavy duty vehicles e.g. city buses, 

buttressing the motivation of our work. Pamula et al. [23] used both deep learning and classical 

neural networks to forecast the energy demand of electric buses.  

 

These prediction models utilized actual data obtained from various bus lines. The models are 

based on input variables that fleet operators can easily measure, but also operational 

information such as bus routes and stop locations, travel time between bus stops, schedules and 

peak hour information. Kontu and Miles [24] investigate factors of influence such as the route 

and driver characteristics. Ericsson [25] studied the effects of different driving patterns 

collected in real traffic on consumption and emissions of internal combustion vehicles. Starting 

with 62 features, a factorial analysis allows them to reduce this number to only 16. This work 

demonstrates, on the one hand, the influence of common kinematic driving pattern parameters, 

such as speed, acceleration, and deceleration, on energy consumption and, on the other, the 

paper evaluated the usefulness of feature analysis and selection. Simonis and Sennefelder [26] 

accurately describe the behavior of drivers as a function of a set of selected characteristics, 

which can be used next to predict energy demand of BEVs.  

 

Interestingly, Abdelaty et al. [27], [28] used a Simulink model to estimate the energy 

consumption of BEBs, where the inputs were carefully selected from a mix of operational, 

topological, vehicular and external variables using machine learning algorithms and statistical 

models. They found that the battery state of charge and the road gradient were the most 
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significant factors, while the vehicle’s drag coefficients appeared to have a relatively minimal 

effect. However, temperature and thus auxiliary power demand are not well covered, which is 

one of the most important factors as Ji et al. demonstrate in their paper [36], in which they 

investigate real world data from a fleet of 31 BEBs in Meihekou City, China. The ambient 

temperature expands from −27◦ C to 35◦ C which lasts in up to 47% increased energy 

consumption compared to optimum working condition. Expanding on this important topic, in 

another recent study by Perugu et al. [37] in Lancaster, California, BEBs energy consumption 

and charging behavior are examined: the vehicles face significant daily and seasonally varying 

temperatures from −9◦ C up to 46◦ C and thus the variability in energy consumption can be 

attributed to the use of heating, cooling, venting and air conditioning (HVAC). 

 

Their results show the existence of relevant operational costs for the operator, which can 

increase up to 18% during summer. Anyway, this cost analysis might be different in other 

situations (location, terrain, traffic etc.) as cost assessment of BEBs is generally a vast field as 

can be seen in [4], [6], depending on a magnitude of factors (production numbers, development 

costs, public grants, energy price etc.). In [38],  Goehlich et al. perform a technology 

assessment for BEBs in Berlin, Germany. They use an energy simulation model to forecast the 

consumption in daily service and finally analyze the system’s economics in terms of total costs 

of ownership (TCO). Using a thermal model of the cabin, they find that heating by Positive 

Temperature Coefficient (PTC) elements is generally more critical than cooling, and discover 

a worst case additional HVAC consumption of up to 1.1 kWh/km, which is almost a third of 

the overall energy consumption.  

Disadvantages 

• Most approaches use data that standard vehicles are often not equipped to measure, such as 

the location of bus stops or road gradient. In addition, variables that are highly dependent on 

the particular conditions of the experiment are frequently taken into account, such as the length 

of the trip. The relationship of the latter with vehicle energy economy is obvious – e.g., the 

further you drive the more energy is consumed. However, it must be used with caution for 

prediction, as machine learning algorithms may focus on it and overlook other relevant factors. 

By contrast, our algorithms take as initial input only the mass (estimated from the curb weight 

plus number of passengers) and the vehicle speed, which can be easily obtained by the user. 

Furthermore, we characterize speed profiles by extracting 40 features at different levels of 

abstraction in the frequency and time domains. This way, we uncover hidden and valuable 

information that leads to higher prediction accuracy, improved generalization, and thus high 
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application relevance. In addition, we implement an intelligent route segmentation algorithm 

that makes the prediction robust to data non-stationarity, making the final framework more 

transferable and even more applicable. 

• Despite the abundance of machine-learning techniques, only a few of them are commonly 

used. In this work, we consider the full range, from non-learning statistical approaches to 

supervised learning and probabilistic methods. Consequently, this work presents and 

comprehensively compares the full potential of novel machine learning methods for predicting 

the energy consumption of EVs. Ultimately, we investigate the performance of various 

powerful machine learning models, from the very technical detail to the long-term application. 

 

• Most studies use data from a single vehicle on a single route or use speed profiles from 

Standardized Driving Cycles (SDCs). Therefore, the variety and diversity 

within the data is comparatively low. However, a major challenge in this area is that the relevant 

factors are diverse and the interrelationships are complex. Thus, the larger the variety in the 

data, the better the machine learning predictions will be. In contrast, the underlying fleet data 

for this work is measured from an entire fleet of 30 vehicles, which operate various routes a 

day and drivers change frequently even during the day. This allows us to capture a wide variety 

of traffic situations and driving styles, containing much more valuable information. 

• Auxiliary power demand, including HVAC, is rarely considered in detail and often replaced 

by a constant  term. However, especially in extreme low and high temperature regions, heating 

and cooling have a significant impact on the energy consumption and thus the range of 

BEBs.We have considered complete energy profiles, including HVAC, recovery, etc., which 

allows this work to address accurate total energy consumption at the trip level, which is relevant 

to transit operators.  

 

III. PROPOSED SYSTEM  

In this paper we use the bus operator’s database and a physics-based model of soon-tobe- 

deployed electric buses to develop data-driven models that predict the energy requirements of 

the vehicles. Amongst others, what distinguishes our contribution from previous data driven 

approaches is the small number of physical variables involved: we show that, to accurately 

predict the consumption on a route using machine learning, we only need to know the 

instantaneous speed of the vehicle and the number of passengers on the bus. Specifically, our 

approach consists of 

three steps: 
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1) We calculate the energy consumed by the bus on each route using a physics-based model, 

validated by the vehicle manufacturer, that uses speed and mass as inputs, 

including the bus’s own weight and the weight of its payload. Both variables are taken from 

the operator’s database. 

2) We extract a comprehensive set of time and frequency features from the speed signal. 

3) We train machine learning regression models to predict the energy consumption from bus 

payload mass and the above set of features, and identify those with the best 

predictive value. Interestingly, the feature that turns out to be the most relevant, i.e., the spectral 

entropy  of velocity, has so far gone unnoticed in this field of research. 

Advantages 

1) We propose a scalable and efficient hybridization Machine Learning models for exact 

predictions. 

2) We conducted several hybridizations of genetic algorithm with filter and embedded feature 

selection methods, in the data pre-processing phase of Random Forest and Multivariate Linear 

Regression (MLR) predictive model, with the aim of improving its performance.

 

 

IV.MODULES 

Service Provider: In this module, the Service Provider has to login by using valid user name 

and password. 
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 After login successful he can do some operations 

such as Browse Datasets and Train & Test Data Sets, View Trained and Tested Accuracy in 

Bar Chart,  

View Trained and Tested Accuracy Results,  

 

 

View Prediction Of Energy Economy Type, View Energy Economy Type Ratio, Download 

Predicted Data Sets, View Energy Economy Type Ratio Results, View All Remote Users. 

 

View and Authorize Users 

In this module, the admin can view the list of users who all registered. In this, the admin can 

view the user’s details such as, user name, email, address and admin authorizes the users. 

 

Remote User 

In this module, there are n numbers of users are present. User should register before doing any 

operations. Once user registers, their details will be stored to the database.  After registration 

successful, he has to login by using authorized user name and password. Once Login is 

successful user will do some operations like  register and login,  predict energy economy 

prediction type, view your profile. 
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V.CONCLUSION 

This paper offers a data-driven approach that uses both simulated and real-world data for 

planning problems and electrification of public transport. The results confirm that the energetic 

relevant features obtained by feature selection and regression analysis perfectly characterize 

the energy consumption of BEBs under different real driving conditions. It is a practical 

approach for fleet operators who want to retrofit or replace their conventional buses with 

electric vehicles and build the corresponding infrastructure. We emphasize in this context the 

so-called ‘‘Vehicle Routing Problem’’, e.g. mentioned by [59], [60]. The energy demand on 

each route needs to be known a priori to correctly size the batteries, decide on the optimal bus 

operating modes (all-electric, hybrid electric, et cetera), and select the best charging strategies 

(i.e. opportunity vs. conventional charging). The worst-case scenario – the most energy-

intensive route – is the limiting factor. Ultimately, this knowledge is essential for fleet operators 

to identify critical operational limits in advance, avoid potential showstoppers, and gain 

confidence in new technologies. Thus, to achieve reliable and affordable service on all routes 

in the end .  

 

              As our main contribution, the paper presents a novel selection of explanatory variables 

that combine time and frequency characteristics of the speed waveform. To extract these 

features, the route is divided into micro trips. This ‘segment-based’ prediction provides 

robustness against non stationarity. Starting with an initial set of 40 features, we have found a 

minimum number of characteristics with high predictive value. The most relevant of these 

features, i.e., the spectral entropy of velocity profiles, has so far even gone unnoticed in this 

field. This result confirms our assumption that it is in the velocity waveform, whose temporal 

structure is well captured by the spectral entropy, where the most essential information actually 

resides. 

 

             In future research, we plan to extend this approach to other scenarios, as the challenge 

is to find out how this methodology performs under different circumstances. The proposed 

approach is of particular interest to companies in the transportation and logistics sector. In 

particular, it is of interest to fleet operators that rely on heavy-duty trucks and often struggle to 

electrify their fleets because they lack a solid framework for making the right choices for the 

right vehicles. It could even be applied to other classes of vehicles or transport systems, such 

as passenger vehicles or rail transport. On the other hand, meteorological characteristics, road 

type and operational features for instance could be investigated more deeply. This is why we 
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plan to investigate seasonally and locally changing conditions and recommend careful feature 

selection according to each use case. Finally, predictive analytics of additional target variables, 

such as the peak power of the system or the electric current demands on the batteries are of 

high interest and could be investigated by the presented methodology. 
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