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Abstract 

In 2016, Angsuman Das introduced the Subspace Inclusion Graph of a Vector Space 𝐼𝑛(𝕍) [1]. It is 

a graph 𝐼𝑛(𝕍) = (𝑉, 𝐸) with 𝑉 as the collection of nontrivial proper subspaces of 𝕍 and 𝑊1,𝑊2 ∈ 𝑉 are 

adjacent if either 𝑊1 ⊂ 𝑊2 or 𝑊2 ⊂ 𝑊1 . Also we studied about the DDI Graph of a Vector Space. It is a 

graph ΓDDI(𝕍) with the vertex set as the collection of non-trivial proper subspaces of a vector space 𝕍 and 

two vertices 𝑊1& 𝑊2 are adjacent if and only if (dim(𝑊2) − dim(𝑊1)) ∈ [dim(𝑊1) , dim(𝑊2)] [without 

of loss generality we assume that dim(𝑊2) ≥ dim(𝑊1)]. In this paper, we generalize the definition DDI 

graph of a Vector Space. Let 𝕍 be a finite dimensional vector space and let 𝑆𝑖 be the set of all proper 

subspaces of dimension 𝑖. Then Generalized DDI graph ΓGDDI(𝕍) of a vector space 𝕍 is a graph with the 

vertex set, 𝑉(Γ𝐺𝐷𝐷𝐼(𝕍) = {𝑆1, 𝑆2, … , 𝑆𝑛−1} and two vertices 𝑆𝑖 &  𝑆𝑗 are adjacent if and only if (𝑗 − 𝑖) ∈

[𝑖, 𝑗] [without of loss generality we assume that 𝑗 ≥ 𝑖]. We investigate the structure and graph theoretical 

properties like connectivity, hamiltonicity, independence and covering number etc for Generalized DDI 

Graph of a Vector Space. 

Keywords - Connectivity, Hamiltonian, Independence number, covering number. 

1 Introduction 

The study of algebraic structures, using the properties of graphs, has become an exciting research 

topic in the last three decades, leading to many fascinating results and questions. There are many papers 

assigning a graph to a ring or group and investigating algebraic properties using the associated graph. In 

this paper, we assign a graph to a finite dimensional vector space 𝕍 and investigate algebraic properties of 

the vector space using graph theoretical concepts. 

mailto:karthipyi91@yahoo.co.in


Review of International Geographical Education ©RIGEO, Volume 11, (12) 2021 

 
 
 

2011 
 

We consider simple graphs which are undirected, with no loops or multiple edges. For any graph 

Γ(𝕍), we denote the sets of the vertices and edges of Γ(𝕍) by 𝑉(Γ(𝕍)) and 𝐸(Γ(𝕍)), respectively. A graph 

𝐺 is said to be complete if every pair of vertices are adjacent and a complete graph on 𝑛 vertices is denoted 

by 𝐾𝑛. A graph 𝐺 is said to be bipartite if the vertex set is partitioned into two subsets 𝑉1 and 𝑉2 such that 

every edge of 𝐺 joins a vertex of 𝑉1 and a vertex of 𝑉2. A complete bipartite graph is the bipartite graph 

in which all possible edges are included and if |𝑉1| = 𝑚 and |𝑉2| = 𝑛 then it is denoted by 𝐾𝑚,𝑛. A graph is 

said to be triangulated if for any vertex 𝑢 in 𝑉(𝐺),  there exist 𝑣, 𝑤 in 𝑉(𝐺), such that (𝑢, 𝑣, 𝑤) is a 

triangle. A clique in a graph 𝐺 is a complete subgraph of 𝐺. For a real number 𝑥, the floor ⌊𝑥⌋ of 𝑥 is the 

greatest integer not exceeding 𝑥. The ceiling ⌈𝑥⌉ of 𝑥 is the smallest integer not less than 𝑥. For 

terminology in graph theory we refer Chatrand and West [3,4]. 

We use the following theorems. 

Theorem 1.1. Let 𝐺 be a connected graph. If 𝐺 is a Hamiltonian graph, then for every nonempty proper 

subset 𝑆 of vertices of 𝐺, the number of connected components of 𝐺\𝑆 is less than or equal to the 

cardinality of 𝑆. 

Theorem 1.2. A graph 𝐺 is Euelrian if and only if degree of every vertex is even. 

2 Main Results 

 Definition 2.1. Let 𝕍 be a finite dimensional vector space and let 𝑆𝑖 be the set of all proper subspaces of 

dimension 𝑖. Then generalized DDI graph ΓGDDI(𝕍) of a vector space 𝕍 is a graph with the vertex set, 

𝑉(Γ𝐺𝐷𝐷𝐼(𝕍) ) = {𝑆1, 𝑆2, … , 𝑆𝑛−1} and two vertices 𝑆𝑖 &  𝑆𝑗 are adjacent iff (𝑗 − 𝑖) ∈ [𝑖, 𝑗] without loss of 

generality we assume that 𝑗 ≥ 𝑖. 

 Lemma 2.2. Let 𝕍 be a finite dimensional vector space. Then the following can be observed about the 

generalized DDI graph Γ𝐺𝐷𝐷𝐼(𝕍) of 𝕍. 

(1) If dim(𝕍) ≥  3, then Γ𝐺𝐷𝐷𝐼(𝕍) is connected. 

(2) If dim(𝕍) ≥  4, then Γ𝐺𝐷𝐷𝐼(𝕍) is not complete. 

(3) If 𝕍 is a finite dimensional vector space and 𝑊 is a subspace of 𝕍 with dimension greater than 1, then 

ΓG(𝑊) is a subgraph of Γ𝐺𝐷𝐷𝐼(𝕍). 

Lemma 2.3. Let 𝑆𝑖 and 𝑆𝑗 be two distinct vertices of a generalized DDI graph. Then 𝑆𝑖 is adjacent to 𝑆𝑗 if 
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and only if 𝑗 ≤ ⌊
𝑖

2
⌋ or 𝑗 ≥ 2𝑖. 

Proof: Let 𝑆𝑖 and 𝑆𝑗 be two distinct vertices of a generalized DDI graph.  

Case: (i) Let 𝑗 ≤ ⌊
𝑖

2
⌋, then 𝑖 − 𝑗 ≤ ⌈

𝑖

2
⌉ ∈ [⌊

𝑖

2
⌋ , 𝑖]. Hence 𝑆𝑖 is adjacent to 𝑆𝑗 . 

Case: (ii) Let 𝑗 ≥ 2𝑖, then 𝑗 − 𝑖 ≥  𝑖 ∈ [𝑖, 2𝑖].$ Hence 𝑆𝑖 is adjacent to 𝑆𝑗. 

Conversely let us assume that 𝑆𝑖 is adjacent to 𝑆𝑗. By definition of Γ𝐺(𝕍), (𝑗 − 𝑖) ∈ [𝑖, 𝑗]  or (𝑖 − 𝑗) ∈ [𝑗, 𝑖]. 

If (𝑗 − 𝑖) ∈ [𝑖, 𝑗], then 𝑗 ≥ 2𝑖. If (𝑖, 𝑗) ∈ [𝑗, 𝑖], then 𝑗 <
𝑖

2
.$ Since 𝑗 is an integer, 𝑗 ≤ ⌊

𝑖

2
⌋. 

Hence the theorem. 

Theorem 2.4. Let 𝕍 be a n-dimensional vector space where 𝑛 ≥ 2 and let 𝑆𝑖 be a vertex of generalized 

DDI graph Γ𝐺𝐷𝐷𝐼(𝕍). Then degree of 𝑆𝑖, deg(𝑆𝑖) =

{
 
 

 
 
𝑛 − 2            if 𝑖 = 1                                     
𝑛 − 3            if 𝑖 = 2                                     

⌊
𝑖

2
⌋                 if 𝑖 ≥ 3 and 𝑖 + 1 ≤ 𝑛 ≤ 2𝑖

𝑛 − ⌈
3𝑖

2
⌉       if 𝑖 ≥ 3 and 𝑛 > 2𝑖              

  

Proof: Let 𝕍 be a n-dimensional vector space where 𝑛 ≥  2 and let 𝑆𝑖 be a vertex of generalized DDI graph 

Γ𝐺𝐷𝐷𝐼 (𝕍). From the definition of 𝛤𝐺𝐷𝐷𝐼(𝑉), the vertex 𝑆1 is adjacent to all 𝑆𝑖 for 2 ≤  𝑖 ≤  𝑛 − 1. Hence 

deg(𝑆1) = 𝑛 − 2. Also the vertex 𝑆2 is not adjacent to only 𝑆3 and so deg(𝑆2) = 𝑛 − 3.  

Case (i) : If 𝑖 ≥  3 and 𝑖 + 1 ≤  𝑛 ≤  2𝑖, then by Lemma 2.4, 𝑆𝑖 is adjacent to {1,2, … , ⌊
𝑖

2
⌋} and so 

deg(𝑆𝑖) = ⌊
𝑖

2
⌋. 

Case (ii) : If 𝑖 ≥ 3 and 𝑛 > 2𝑖, then Lemma 2.3, 𝑆𝑖 is not adjacent to {⌊
𝑖

2
⌋ + 1, ⌊

𝑖

2
⌋ + 2,… , 2𝑖 − 1}. Hence 

deg(𝑆𝑖) =  𝑛 − 1 − ⌊
𝑖−1

2
⌋ − 𝑖 =  𝑛 − 1 − 𝑖 − (⌈

𝑖

2
⌉  − 1) =  𝑛 − 𝑖 − ⌈

𝑖

2
⌉ = 𝑛 − ⌈

3𝑖

2
⌉. 

Theorem 2.5. The generalized DDI graph Γ𝐺𝐷𝐷𝐼(𝕍) is regular if and only if dim(𝕍) ≤ 3. 

Proof: If dim(𝕍) ≤ 3, then Γ𝐺𝐷𝐷𝐼(𝕍) is either trivial or Γ𝐺𝐷𝐷𝐼(𝕍) ≅ 𝐾2 and so Γ𝐺𝐷𝐷𝐼(𝕍) is regular. 

Conversely assume that Γ𝐺𝐷𝐷𝐼(𝕍) is regular. If dim(𝕍) = 𝑛 > 3, then degree of 𝑆1 and 𝑆2 are 𝑛 − 2 and 

𝑛 − 3  respectively and so ΓGDDI(𝕍) is not regular which is a contradiction. Hence dim(𝕍) ≤ 3. 
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Theorem 2.5. The generalized DDI graph Γ𝐺𝐷𝐷𝐼(𝕍) is complete bipartite if and only if dim(𝕍) = 3 or 4. 

Proof: If dim(𝕍) = 3, then Γ𝐺𝐷𝐷𝐼(𝕍) ≅ 𝐾2 and if dim(𝕍) = 4, then Γ𝐺𝐷𝐷𝐼(𝕍) ≅ 𝐾1,2 and so Γ𝐺𝐷𝐷𝐼(𝕍) is 

complete bipartite. Conversely assume that Γ𝐺𝐷𝐷𝐼(𝕍) is complete bipartite. Suppose dim(𝕍) ≥ 5, then the 

girth is 3 and so ΓGDDI(𝕍) cannot be complete bipartite which is a contradiction and so dim(𝕍) < 5. If 

dim(𝕍) = 2, then Γ𝐺𝐷𝐷𝐼(𝕍) is trivial. Hence dim (𝕍) is either 3 or 4. 

Theorem 2.7. The generalized DDI graph Γ𝐺𝐷𝐷𝐼(𝕍) is not Hamiltonian. 

Proof. Let Γ𝐺𝐷𝐷𝐼(𝕍) be a generalized DDI graph of a n-dimensional vector space 𝕍. Let 𝑆 =

{𝑆1, 𝑆2, … , 𝑆⌊𝑛−2
2
⌋
}, then the removal of elements in 𝑆 from Γ𝐺𝐷𝐷𝐼(𝕍) results the disconnected graph  with 

⌈
𝑛

2
⌉ number of connected components.  Hence the number of connected components in Γ𝐺𝐷𝐷𝐼(𝕍)\𝑆 is ⌈

𝑛

2
⌉ >

⌊
𝑛−2

2
⌋. By Theorem 1.1, Γ𝐺𝐷𝐷𝐼(𝕍) is not Hamiltonian. 

Theorem 2.8. The generalized DDI graph Γ𝐺𝐷𝐷𝐼(𝕍) cannot be Eulerian. 

Proof. Let Γ𝐺𝐷𝐷𝐼(𝕍) be a generalized DDI graph of  a n-dimensional vector space 𝕍. By Theorem 2.4, 

either the degree of 𝑆1 or the degree of 𝑆2 is odd and so by Theorem 1.2 Γ𝐺𝐷𝐷𝐼(𝕍) is not Eulerian. 

Theorem 2.9. Let Γ𝐺𝐷𝐷𝐼(𝕍) be a generalized DDI graph of a 𝑛 −dimensional vector space 𝕍 where 𝑛 ≥ 3. 

Then the independence number, 𝛽(Γ𝐺𝐷𝐷𝐼(𝕍)) = ⌊
𝑛

2
⌋  

Proof. Let Γ𝐺𝐷𝐷𝐼(𝕍) be a generalized DDI graph of a 𝑛 −dimensional vector space 𝕍. Clearly the set 𝑆 =

{𝑆
⌈
𝑛

2
⌉
, 𝑆
⌈
𝑛

2
⌉+1
, … , 𝑆𝑛−1} is not adjacent pairwise and so 𝑆 is independent set in Γ𝐺𝐷𝐷𝐼(𝕍). Also 𝑆 is an 

maximal since if there exists a 𝑆𝑖  where 𝑖 < ⌈
𝑛

2
⌉ which is adjacent to 𝑆𝑛−1. Hence 𝑆 is a maximum 

independent set. The number of elements in 𝑆 is 𝑛 − 1 − (⌈
𝑛

2
⌉  − 1) = ⌊

𝑛

2
⌋. Hence 𝛽(Γ𝐺𝐷𝐷𝐼(𝕍)) = ⌊

𝑛

2
⌋. 

Theorem 2.10. Let Γ𝐺𝐷𝐷𝐼(𝕍) be a generalized DDI graph of a 𝑛 −dimensional vector space 𝕍 where 𝑛 ≥

3. Then the covering number, 𝛼(Γ𝐺𝐷𝐷𝐼(𝕍)) = ⌈
𝑛

2
⌉ − 1.  

Proof. Given dim(𝕍) ≥ 3. Since 𝛼(ΓGDDI(𝕍)) + 𝛽(ΓGDDI (𝕍)) = dim(𝕍) − 1 = 𝑛 − 1,   
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𝛽(ΓGDDI(𝕍)) = 𝑛 − 1 − 𝛼(ΓGDDI(𝕍)) = 𝑛 − 1 − ⌊
𝑛

2
⌋ = ⌈

𝑛

2
⌉ − 1. 

Theorem 2.11. Let Γ𝐺𝐷𝐷𝐼(𝕍) be a generalized DDI graph of a 𝑛 −dimensional vector space 𝕍 where 𝑛 ≥

3. Then the edge covering number, 𝛼1(Γ𝐺𝐷𝐷𝐼(𝕍)) = ⌊
𝑛
2
⌋. 

Proof. If dim(𝕍) = 𝑛 and is odd, clearly the set {𝑒1 = (𝑆1, 𝑆𝑖+1), 𝑒2 = (𝑆2, 𝑆𝑖+2),… , 𝑒𝑖 = (𝑆𝑖, 𝑆2𝑖)} where 

𝑖 =
𝑛−1

2
 is a minimum edge cover and so 𝛼1(Γ𝐺𝐷𝐷𝐼(𝕍)) = 𝑖 =

𝑛−1
2
= ⌊

𝑛
2
⌋.  

If dim(𝕍) = 𝑛 and is even, clearly the set {𝑒1 = (𝑆1, 𝑆𝑖+1), 𝑒2 = (𝑆2, 𝑆𝑖+2),… , 𝑒𝑖−1 = (𝑆𝑖−1, 𝑆2𝑖−1), 𝑒𝑖 =

(𝑆𝑖, 𝑆1)}  where 𝑖 =
𝑛

2
  is a minimum edge cover and so 𝛼1 (Γ𝐺𝐷𝐷𝐼(𝕍)) = 𝑖 =

𝑛
2
= ⌊

𝑛
2
⌋.  

Theorem 2.12. Let Γ𝐺𝐷𝐷𝐼(𝕍) be a generalized DDI graph of a 𝑛 −dimensional vector space 𝕍 where 𝑛 ≥

3. Then the edge independence number, 𝛽1(Γ𝐺𝐷𝐷𝐼(𝕍)) = ⌈
𝑛
2
⌉ − 1. 

Proof. Since dim(𝕍) ≥ 3 and 𝛼1(ΓGDDI(𝕍)) + 𝛽1(ΓGDDI(𝕍)) = dim(𝕍)− 1 = 𝑛 − 1, 𝛽1(ΓGDDI(𝕍)) =

𝑛 − 1 − 𝛼1(ΓGDDI(𝕍)) = 𝑛 − 1 − ⌊
𝑛

2
⌋ = ⌈

𝑛

2
⌉ − 1. 
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