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Abstract 

In 2016, Angsuman Das introduced the Subspace Inclusion Graph of a Vector Space 𝐼𝑛(𝕍) [2]. It is 

a graph 𝐼𝑛(𝕍) = (𝑉, 𝐸) with 𝑉 as the collection of nontrivial proper subspaces of 𝕍 and 𝑊1, 𝑊2 ∈ 𝑉 are 

adjacent if either 𝑊1 ⊂ 𝑊2 or 𝑊2 ⊂ 𝑊1 . In this paper, we introduce a DDI graph of a Vector Space. Let 𝕍 

be a finite-dimensional vector space. Then DDI graph ΓDDI(𝕍) of a vector space 𝕍 is a graph with the 

vertex set as the collection of non-trivial proper subspaces of a vector space 𝕍 and two vertices 𝑊1& 𝑊2 

are adjacent if and only if (dim(𝑊2) − dim(𝑊1)) ∈ [dim(𝑊1) , dim(𝑊2)] [without of loss generality we 

assume that dim(𝑊2) ≥ dim(𝑊1)]. We investigate the structure and graph theoretical properties like 

connectivity, hamiltonicity, diameter, girth, etc for the Dimension Difference Interval Graph of a Vector 

Space. 

Keywords - Connectivity, Hamiltonian, Diameter, Girth. 

1 Introduction 

The study of algebraic structures using graph properties has become an exciting research topic in 

the last three decades, leading to many fascinating results and questions. Many papers assign a graph to a 

ring or group and investigate algebraic properties using the associated graph. In this paper, we assign a 

graph to a finite-dimensional vector space 𝕍 and investigate algebraic properties of the vector space using 

graph theoretical concepts. 
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We consider simple undirected graphs with no loops or multiple edges. For any graph Γ(𝕍), we 

denote the sets of the vertices and edges of Γ(𝕍) by 𝑉(Γ(𝕍)) and 𝐸(Γ(𝕍)), respectively. A graph 𝐺 is said 

to be complete if every pair of vertices are adjacent and a complete graph on 𝑛 vertices is denoted by 𝐾𝑛. 

A graph 𝐺 is said to be bipartite if the vertex set is partitioned into two subsets 𝑉1 and 𝑉2 such that every 

edge of 𝐺 joins a vertex of 𝑉1 and a vertex of 𝑉2. A complete bipartite graph is the bipartite graph in 

which all possible edges are included and if |𝑉1| = 𝑚 and |𝑉2| = 𝑛 then it is denoted by 𝐾𝑚,𝑛. If 𝐺 has a 

𝑢 − 𝑣 path, then the distance from 𝑢 to 𝑣, written as 𝑑(𝑢, 𝑣) is the least length of a 𝑢 − 𝑣 path. If 𝐺 has no 

such path, then 𝑑(𝑢, 𝑣) = ∞. A graph is said to be triangulated if for any vertex 𝑢 in 𝑉(𝐺),  there exist 

𝑣, 𝑤 in 𝑉(𝐺), such that (𝑢, 𝑣, 𝑤) is a triangle. A clique in a graph 𝐺 is a complete subgraph of 𝐺. The order 

of the largest clique in a graph 𝐺 is its clique number, which is denoted by 𝜔(𝐺). If a graph can be drawn 

in the plane without crossing edges then it is called a planar graph. For a real number 𝑥, the floor ⌊𝑥⌋ of 𝑥 

is the greatest integer not exceeding 𝑥. The ceiling ⌈𝑥⌉ of 𝑥 is the smallest integer not less than 𝑥. For 

terminology in graph theory we refer Chatrand and West [3,4]. 

Throughout this paper, even if it is not mentioned explicitly, the underlying field is 𝔽 and 𝕍 is finite 

dimensional. We investigate the structure and graph theoretical properties like connectivity, hamiltonicity, 

diameter, girth etc for Γ(𝕍). 

2 Main Results 

 Definition 2.1. Let 𝕍 be a finite dimensional vector space. Then dimension difference interval graph 

ΓDDI(𝕍) of a vector space 𝕍 is a graph with the vertex set as the collection of non-trivial proper subspaces 

of the vector space  𝕍 and two vertices 𝑊1 &  𝑊2 are adjacent if and only if (dim(𝑊2) − dim(𝑊1)) ∈

[dim(𝑊1) , dim(𝑊2)]. Without loss of generality we assume that dim(𝑊2) ≥ dim(𝑊1). 

 Lemma 2.2. If 𝑊1 is a 1-dimensional subspace and 𝑊2 is any subspace of  𝕍 with dim(𝑊2) = 𝑚 ≥ 2 then 

𝑊1 is adjacent to 𝑊2 in ΓDDI(𝕍). 

Proof: By the definition of ΓDDI(𝕍),   (dim(𝑊2) − dim(𝑊1)) = 𝑚 − 1. Clearly 𝑚 − 1 ∈ [1, 𝑚]. Hence 𝑊1 

is adjacent to 𝑊2. 

Lemma 2.3. Let 𝕍 be a finite dimensional vector space. Then the following can be observed about the DDI 

graph Γ𝐷𝐷𝐼(𝕍) of 𝕍. 
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(i) Let 𝑆1 be the set of all 1-dimensional subspaces and 𝑆2 be the set of all proper subspaces of 𝕍 

with dimension greater than 1. Then every element of 𝑆1 is adjacent to every element of 𝑆2. 

(ii) If dim(𝕍) ≥ 3, then ΓDDI(𝕍) is connected. 

(iii) If dim(𝕍) ≥ 3, then the diameter, diam(ΓDDI(𝕍)) = 2. 

Lemma 2.4. If 𝑊1 & 𝑊2 are two distinct proper subspaces of 𝕍 of same dimension then 𝑊1 is not adjacent 

to 𝑊2. 

Proof: Let 𝑊1 & 𝑊2 be two distinct m-dimensional proper subspaces of 𝕍. Suppose 𝑊1 is adjacent to 𝑊2, 

then by definition of Γ(𝕍), dim(𝑊2) − dim(𝑊1) = 0 ∉ {𝑚} which is a contradiction. Hence 𝑊1 is not 

adjacent to 𝑊2. 

Lemma 2.5. Let 𝑊 be a subspace of a finite dimensional vector space 𝕍 with dim(𝑊) = 𝑚 > 1 and let 

𝑊1 be any proper subspace of 𝕍. Then 𝑊 is adjacent to to 𝑊1 iff dim(𝑊1) ≤ ⌊
𝑚

2
⌋ or dim(𝑊1) ≥  2𝑚. 

Proof:  Let 𝑊 be a 𝑚 −dimensional subspace of a 𝑛 −dimensional vector space 𝕍.  Let 𝑊1 be any another 

proper subspace of 𝕍. 

Case: (i) Let dim(𝑊1) ≤ ⌊
𝑚

2
⌋. Then (dim(𝑊) − dim(𝑊1)) ≥ ⌈

𝑚

2
⌉ ∈  [⌊

𝑚

2
⌋ , 𝑚].$ Hence 𝑊 is adjacent to 

𝑊1.   

Case: (ii) Let dim(𝑊1) ≥  2𝑚. Then (dim(𝑊1) − dim(𝑊)) ≥  𝑚 ∈ [𝑚, 2𝑚]. Hence 𝑊 is adjacent to 𝑊1. 

Conversely let us assume that 𝑊 is adjacent to 𝑊1. Let dim(𝑊1) = 𝑚1. By definition of ΓDDI(𝕍),  

(𝑚1 − 𝑚) ∈ [𝑚, 𝑚1]  or (𝑚 − 𝑚1) ∈ [𝑚1, 𝑚]. If (𝑚1 − 𝑚) ∈  [𝑚, 𝑚1] then 𝑚1 ≥  2𝑚. If (𝑚 − 𝑚1) ∈

[𝑚1, 𝑚] then 𝑚1 ≤
𝑚

2
. Since 𝑚1 is an integer, 𝑚1 ≤ ⌊

𝑚

2
⌋. 

Hence the theorem. 

Lemma 2.6. If 𝕍 is a finite dimensional vector space over a field 𝔽 and 𝑊 is a subspace of 𝕍 with 

dimension greater than 1, then ΓDDI(𝑊) is a subgraph of ΓDDI(𝕍). 

Proof: It follows from the definition of ΓDDI(𝕍) and the fact that every subspace of 𝑊 is also a subspace of 

𝕍. 
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Lemma 2.7. If dim(𝕍) = 2, then ΓDDI(𝕍) is a totally disconnected graph. 

Proof:  As dim(𝕍) = 2, only non-trivial proper subspaces of 𝕍 are of dimension 1. Clearly, no two 

vertices of ΓDDI(𝕍) are adajcent. 

Lemma 2.8. For any vector space 𝕍 with dim(𝕍) > 1, ΓDDI(𝕍) can never be complete. 

Proof: Since dim(𝕍) > 1, there exists at least two linearly independent vectors 𝛼 and 𝛽 in 𝕍. Then 𝑊1 =

〈𝛼〉 and 𝑊2 = 〈𝛽〉 are two non-trivial proper subspaces of 𝕍 which are not adjacent. So ΓDDI(𝕍) is not 

complete. 

Lemma 2.9. If 𝕍 is an 𝑛 −dimensional vector space with 𝑛 ≥ 3, then ΓDDI(𝕍) is not planar. 

Proof: Let 𝕍 be a finite dimensional vector space of dimension at least 3. Then 𝕍 has subspaces of 

dimension either 1 or 2. Also we know that the underlying field has at least two elements. Then the number 

of 1 −dimensional and 2 −dimensional subspaces are at least 7. Thus 𝐾7,7 is a subgraph of ΓDDI(𝕍). Hence 

ΓDDI(𝕍) is not planar. 

Lemma 2.10. If dim(𝕍) ≥ 7, then ΓDDI(𝕍) is triangulated. 

Proof: Let 𝕍 be a finite dimensional vector space of dimension at least 7. Let 𝑊 be any proper subspace of 

𝕍. To prove that 𝑊 lies on a triangle in ΓDDI(𝕍).  

Case 1: dim(𝑊) = 1. Since dim(𝕍) ≥  7, there exists two subspaces 𝑊1& 𝑊2 of dimensions 2 and 4 

respectively. Also 𝑊 − 𝑊1 − 𝑊2 − 𝑊 form a triangle. 

Case 2: dim(𝑊) = 2. Since dim(𝕍) ≥ 7, there exists two subspaces 𝑊1 & 𝑊2 of dimensions 1 and 4 

respectively. Also 𝑊 − 𝑊1 − 𝑊2 − 𝑊 form a triangle. 

Case 3: dim(𝑊) = 3. Since dim(𝕍) ≥ 7, there exists two subspaces 𝑊1 & 𝑊2 of dimensions 1 and 6 

respectively. Also 𝑊 − 𝑊1 − 𝑊2 − 𝑊 form a triangle. 

Case 4: dim(𝑊) ≥ 4. Then there exists two subspaces 𝑊1 & 𝑊2 of dimensions 1 and 2 respectively such 

that 𝑊 − 𝑊1 − 𝑊2 − 𝑊 form a triangle. 

Theorem: 2.11. Let 𝕍 be an 𝑛 −dimensional vector space. Let 𝑚 be the least positive integer such that 𝑛 ≤

2𝑚. Then the clique number 𝜔(ΓDDI(𝕍)) = 𝑚. 

Proof: Let 𝕍 be an 𝑛 −dimensional vector space. Let 𝑚 be the least positive integer such that 𝑛 ≤  2𝑚.  
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Let the subspaces 𝑊1, 𝑊2, … , 𝑊𝑚 be of dimension 20, 21, … , 2𝑚−1 respectively. We know that these are 

pairwise adjacent. Then 𝜔(ΓDDI(𝕍)) ≥  𝑚. 

Suppose there exist a subspace 𝑊𝑖 of 𝕍 such that dim(𝑊𝑖) = 𝑘 ≠ 2𝑙 where 𝑙 = 0,1, … , 𝑚 − 1. (i.e) 𝑊𝑖 

is a subspace whose dimension is not a power of 2. Therefore 2𝑗 < 𝑘 < 2𝑗+1 for some 𝑗. Then 𝑊𝑖 is not 

adjacent to 𝑊𝑗 for 𝑗 = 1,2, … , 𝑚. Hence 𝜔(ΓDDI(𝕍)) = 𝑚. 

Theorem 2.12.  Let 𝕍 be an 𝑛 −dimensional vector space. Let 𝑚 be the least positive integer such that 𝑛 ≤

2𝑚. Then the chromatic number 𝜒(ΓDDI(𝕍)) = 𝑚. 

Proof: By Theorem 2.11, 𝜒(ΓDDI(𝕍)) ≥  𝑚. For any subspace 𝑊 of 𝕍, colour 𝑊 with 𝑗𝑡ℎ colour if 2𝑗−1 ≤

dim(𝑊) <  2𝑗. Clearly no two adjaccent vertices get a same colour. Hence 𝜒(ΓDDI(𝕍)) = 𝑚. 
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