Review of International Geographical Education | RIGEO | 2020

www.rigeo.org

An Introduction to DDI Graph of a Vector Space

V.P. Asan Nagoor Meeran* (Reg. No: 19114012091063)

Department of Mathematics Manonmaniam Sundaranar University Abishekapatti, Tirunelveli. Email:vpanm595@sadakath.ac.in

R.Kala**

Professor, Department of Mathematics Manonmaniam Sundaranar University Abishekapatti, Tirunelveli. Email: karthipyi91@yahoo.co.in

Abstract

In 2016, Angsuman Das introduced the Subspace Inclusion Graph of a Vector Space $In(\mathbb{V})$ [2]. It is a graph $In(\mathbb{V}) = (V, E)$ with V as the collection of nontrivial proper subspaces of \mathbb{V} and $W_1, W_2 \in V$ are adjacent if either $W_1 \subset W_2$ or $W_2 \subset W_1$. In this paper, we introduce a DDI graph of a Vector Space. Let \mathbb{V} be a finite-dimensional vector space. Then DDI graph $\Gamma_{\text{DDI}}(\mathbb{V})$ of a vector space \mathbb{V} is a graph with the vertex set as the collection of non-trivial proper subspaces of a vector space \mathbb{V} and two vertices $W_1 \& W_2$ are adjacent if and only if $(\dim(W_2) - \dim(W_1)) \in [\dim(W_1), \dim(W_2)]$ [without of loss generality we assume that $\dim(W_2) \ge \dim(W_1)$]. We investigate the structure and graph theoretical properties like connectivity, hamiltonicity, diameter, girth, etc for the Dimension Difference Interval Graph of a Vector Space.

Keywords - Connectivity, Hamiltonian, Diameter, Girth.

1 Introduction

The study of algebraic structures using graph properties has become an exciting research topic in the last three decades, leading to many fascinating results and questions. Many papers assign a graph to a ring or group and investigate algebraic properties using the associated graph. In this paper, we assign a graph to a finite-dimensional vector space \mathbb{V} and investigate algebraic properties of the vector space using graph theoretical concepts.

We consider simple undirected graphs with no loops or multiple edges. For any graph $\Gamma(\mathbb{V})$, we denote the sets of the vertices and edges of $\Gamma(\mathbb{V})$ by $V(\Gamma(\mathbb{V}))$ and $E(\Gamma(\mathbb{V}))$, respectively. A graph *G* is said to be **complete** if every pair of vertices are adjacent and a complete graph on *n* vertices is denoted by K_n . A graph *G* is said to be **bipartite** if the vertex set is partitioned into two subsets V_1 and V_2 such that every edge of *G* joins a vertex of V_1 and a vertex of V_2 . A **complete bipartite graph** is the bipartite graph in which all possible edges are included and if $|V_1| = m$ and $|V_2| = n$ then it is denoted by $K_{m,n}$. If *G* has a u - v path, then the distance from *u* to *v*, written as d(u, v) is the least length of a u - v path. If *G* has no such path, then $d(u, v) = \infty$. A graph is said to be **triangulated** if for any vertex *u* in V(G), there exist v, w in V(G), such that (u, v, w) is a triangle. A **clique** in a graph *G* is a complete subgraph of *G*. The order of the largest clique in a graph *G* is its **clique number**, which is denoted by $\omega(G)$. If a graph can be drawn in the plane without crossing edges then it is called a **planar graph**. For a real number *x*, the **floor** [x] of *x* is the greatest integer not exceeding *x*. The **ceiling** [x] of *x* is the smallest integer not less than *x*. For terminology in graph theory we refer Chatrand and West [3,4].

Throughout this paper, even if it is not mentioned explicitly, the underlying field is \mathbb{F} and \mathbb{V} is finite dimensional. We investigate the structure and graph theoretical properties like connectivity, hamiltonicity, diameter, girth etc for $\Gamma(\mathbb{V})$.

2 Main Results

Definition 2.1. Let \mathbb{V} be a finite dimensional vector space. Then dimension difference interval graph $\Gamma_{\text{DDI}}(\mathbb{V})$ of a vector space \mathbb{V} is a graph with the vertex set as the collection of non-trivial proper subspaces of the vector space \mathbb{V} and two vertices $W_1 \& W_2$ are adjacent if and only if $(\dim(W_2) - \dim(W_1)) \in [\dim(W_1), \dim(W_2)]$. Without loss of generality we assume that $\dim(W_2) \ge \dim(W_1)$.

Lemma 2.2. If W_1 is a 1-dimensional subspace and W_2 is any subspace of \mathbb{V} with dim $(W_2) = m \ge 2$ then W_1 is adjacent to W_2 in $\Gamma_{\text{DDI}}(\mathbb{V})$.

Proof: By the definition of $\Gamma_{\text{DDI}}(\mathbb{V})$, $(\dim(W_2) - \dim(W_1)) = m - 1$. Clearly $m - 1 \in [1, m]$. Hence W_1 is adjacent to W_2 .

Lemma 2.3. Let \mathbb{V} be a finite dimensional vector space. Then the following can be observed about the DDI graph $\Gamma_{DDI}(\mathbb{V})$ of \mathbb{V} .

- (i) Let S_1 be the set of all 1-dimensional subspaces and S_2 be the set of all proper subspaces of \mathbb{V} with dimension greater than 1. Then every element of S_1 is adjacent to every element of S_2 .
- (ii) If dim(\mathbb{V}) \geq 3, then $\Gamma_{\text{DDI}}(\mathbb{V})$ is connected.
- (iii) If dim(\mathbb{V}) \geq 3, then the diameter, diam($\Gamma_{\text{DDI}}(\mathbb{V})$) = 2.

Lemma 2.4. If $W_1 \& W_2$ are two distinct proper subspaces of \mathbb{V} of same dimension then W_1 is not adjacent to W_2 .

Proof: Let $W_1 \& W_2$ be two distinct m-dimensional proper subspaces of \mathbb{V} . Suppose W_1 is adjacent to W_2 , then by definition of $\Gamma(\mathbb{V})$, $\dim(W_2) - \dim(W_1) = 0 \notin \{m\}$ which is a contradiction. Hence W_1 is not adjacent to W_2 .

Lemma 2.5. Let W be a subspace of a finite dimensional vector space \mathbb{V} with $\dim(W) = m > 1$ and let W_1 be any proper subspace of \mathbb{V} . Then W is adjacent to to W_1 iff $\dim(W_1) \le \left\lfloor \frac{m}{2} \right\rfloor$ or $\dim(W_1) \ge 2m$.

Proof: Let *W* be a *m*-dimensional subspace of a *n*-dimensional vector space \mathbb{V} . Let W_1 be any another proper subspace of \mathbb{V} .

Case: (i) Let dim $(W_1) \leq \left\lfloor \frac{m}{2} \right\rfloor$. Then $(\dim(W) - \dim(W_1)) \geq \left\lfloor \frac{m}{2} \right\rfloor \in \left\lfloor \left\lfloor \frac{m}{2} \right\rfloor, m \right\rfloor$. Hence W is adjacent to W_1 .

Case: (ii) Let dim $(W_1) \ge 2m$. Then $(\dim(W_1) - \dim(W)) \ge m \in [m, 2m]$. Hence W is adjacent to W_1 .

Conversely let us assume that W is adjacent to W_1 . Let $\dim(W_1) = m_1$. By definition of $\Gamma_{\text{DDI}}(\mathbb{V})$, $(m_1 - m) \in [m, m_1]$ or $(m - m_1) \in [m_1, m]$. If $(m_1 - m) \in [m, m_1]$ then $m_1 \ge 2m$. If $(m - m_1) \in [m_1, m]$ then $m_1 \le \frac{m}{2}$. Since m_1 is an integer, $m_1 \le \left\lfloor \frac{m}{2} \right\rfloor$.

Hence the theorem.

Lemma 2.6. If \mathbb{V} is a finite dimensional vector space over a field \mathbb{F} and W is a subspace of \mathbb{V} with dimension greater than 1, then $\Gamma_{\text{DDI}}(W)$ is a subgraph of $\Gamma_{\text{DDI}}(\mathbb{V})$.

Proof: It follows from the definition of $\Gamma_{DDI}(\mathbb{V})$ and the fact that every subspace of *W* is also a subspace of \mathbb{V} .

Lemma 2.7. If dim(\mathbb{V}) = 2, then $\Gamma_{\text{DDI}}(\mathbb{V})$ is a totally disconnected graph.

Proof: As dim(\mathbb{V}) = 2, only non-trivial proper subspaces of \mathbb{V} are of dimension 1. Clearly, no two vertices of $\Gamma_{\text{DDI}}(\mathbb{V})$ are adajcent.

Lemma 2.8. For any vector space \mathbb{V} with dim $(\mathbb{V}) > 1$, $\Gamma_{\text{DDI}}(\mathbb{V})$ can never be complete.

Proof: Since dim(\mathbb{V}) > 1, there exists at least two linearly independent vectors α and β in \mathbb{V} . Then $W_1 = \langle \alpha \rangle$ and $W_2 = \langle \beta \rangle$ are two non-trivial proper subspaces of \mathbb{V} which are not adjacent. So $\Gamma_{\text{DDI}}(\mathbb{V})$ is not complete.

Lemma 2.9. If \mathbb{V} is an *n*-dimensional vector space with $n \ge 3$, then $\Gamma_{\text{DDI}}(\mathbb{V})$ is not planar.

Proof: Let \mathbb{V} be a finite dimensional vector space of dimension at least 3. Then \mathbb{V} has subspaces of dimension either 1 or 2. Also we know that the underlying field has at least two elements. Then the number of 1 –dimensional and 2 –dimensional subspaces are at least 7. Thus $K_{7,7}$ is a subgraph of $\Gamma_{\text{DDI}}(\mathbb{V})$. Hence $\Gamma_{\text{DDI}}(\mathbb{V})$ is not planar.

Lemma 2.10. If dim(\mathbb{V}) \geq 7, then $\Gamma_{\text{DDI}}(\mathbb{V})$ is triangulated.

Proof: Let \mathbb{V} be a finite dimensional vector space of dimension at least 7. Let W be any proper subspace of \mathbb{V} . To prove that W lies on a triangle in $\Gamma_{\text{DDI}}(\mathbb{V})$.

Case 1: dim(W) = 1. Since dim $(V) \ge 7$, there exists two subspaces $W_1 \& W_2$ of dimensions 2 and 4 respectively. Also $W - W_1 - W_2 - W$ form a triangle.

Case 2: dim(W) = 2. Since dim $(V) \ge 7$, there exists two subspaces $W_1 \& W_2$ of dimensions 1 and 4 respectively. Also $W - W_1 - W_2 - W$ form a triangle.

Case 3: dim(W) = 3. Since dim $(V) \ge 7$, there exists two subspaces $W_1 \& W_2$ of dimensions 1 and 6 respectively. Also $W - W_1 - W_2 - W$ form a triangle.

Case 4: dim $(W) \ge 4$. Then there exists two subspaces $W_1 \& W_2$ of dimensions 1 and 2 respectively such that $W - W_1 - W_2 - W$ form a triangle.

Theorem: 2.11. Let \mathbb{V} be an n –dimensional vector space. Let m be the least positive integer such that $n \leq 2^m$. Then the clique number $\omega(\Gamma_{\text{DDI}}(\mathbb{V})) = m$.

Proof: Let V be an *n*-dimensional vector space. Let *m* be the least positive integer such that $n \leq 2^m$.

Let the subspaces $W_1, W_2, ..., W_m$ be of dimension $2^0, 2^1, ..., 2^{m-1}$ respectively. We know that these are pairwise adjacent. Then $\omega(\Gamma_{\text{DDI}}(\mathbb{V})) \ge m$.

Suppose there exist a subspace W_i of \mathbb{V} such that $\dim(W_i) = k \neq 2^l$ where l = 0, 1, ..., m - 1. (i.e) W_i is a subspace whose dimension is not a power of 2. Therefore $2^j < k < 2^{j+1}$ for some j. Then W_i is not adjacent to W_i for j = 1, 2, ..., m. Hence $\omega(\Gamma_{\text{DDI}}(\mathbb{V})) = m$.

Theorem 2.12. Let \mathbb{V} be an n –dimensional vector space. Let m be the least positive integer such that $n \leq 2^m$. Then the chromatic number $\chi(\Gamma_{\text{DDI}}(\mathbb{V})) = m$.

Proof: By Theorem 2.11, $\chi(\Gamma_{\text{DDI}}(\mathbb{V})) \ge m$. For any subspace W of \mathbb{V} , colour W with *j*th colour if $2^{j-1} \le \dim(W) < 2^j$. Clearly no two adjaccent vertices get a same colour. Hence $\chi(\Gamma_{\text{DDI}}(\mathbb{V})) = m$.

REFERENCES

- [1] Angsuman Das, Subspaces Inclusion Graph of a Vector Space, Communications in Algebra, 2016, 44:11, 4724-4731.
- [2] P.Balakrishnan and R. Kala, The Order Difference Interval Graph of a Group, *Transactions on Combinatorics*, Vol.1 No.2, (2012), PP 59-65.
- [3] Gary Chatrand and Ping Zhang, Introduction to graph theory, Tata McGraw-Hill, India, 2006.
- [4] Douglas. B. West, Inroduction to Graph Theory, 2nd edition, Prentice Hall, Upper Saddle River, 2001.