Review of International Geographical Education | RIGEO | 2020

An Introduction to DDI Graph of a Vector Space

V.P. Asan Nagoor Meeran* (Reg. No: 19114012091063)

Department of Mathematics Manonmaniam Sundaranar University Abishekapatti, Tirunelveli. Email:vpanm595@sadakath.ac.in

R.Kala**

Professor**,** Department of Mathematics Manonmaniam Sundaranar University Abishekapatti, Tirunelveli. Email: karthipyi91@yahoo.co.in

Abstract

In 2016, Angsuman Das introduced the Subspace Inclusion Graph of a Vector Space $In(V)$ [2]. It is a graph $In(\mathbb{V}) = (V, E)$ with V as the collection of nontrivial proper subspaces of V and $W_1, W_2 \in V$ are adjacent if either $W_1 \subset W_2$ or $W_2 \subset W_1$. In this paper, we introduce a DDI graph of a Vector Space. Let V be a finite-dimensional vector space. Then DDI graph $\Gamma_{DDI}(\mathbb{V})$ of a vector space $\mathbb V$ is a graph with the vertex set as the collection of non-trivial proper subspaces of a vector space V and two vertices $W_1 \& W_2$ are adjacent if and only if $(\dim(W_2) - \dim(W_1)) \in [\dim(W_1), \dim(W_2)]$ [without of loss generality we assume that $\dim(W_2) \geq \dim(W_1)$. We investigate the structure and graph theoretical properties like connectivity, hamiltonicity, diameter, girth, etc for the Dimension Difference Interval Graph of a Vector Space.

Keywords - Connectivity, Hamiltonian, Diameter, Girth.

1 Introduction

The study of algebraic structures using graph properties has become an exciting research topic in the last three decades, leading to many fascinating results and questions. Many papers assign a graph to a ring or group and investigate algebraic properties using the associated graph. In this paper, we assign a graph to a finite-dimensional vector space ∇ and investigate algebraic properties of the vector space using graph theoretical concepts.

We consider simple undirected graphs with no loops or multiple edges. For any graph $\Gamma(\mathbb{V})$, we denote the sets of the vertices and edges of $\Gamma(W)$ by $V(\Gamma(W))$ and $E(\Gamma(W))$, respectively. A graph G is said to be **complete** if every pair of vertices are adjacent and a complete graph on n vertices is denoted by K_n . A graph G is said to be **bipartite** if the vertex set is partitioned into two subsets V_1 and V_2 such that every edge of G joins a vertex of V_1 and a vertex of V_2 . A **complete bipartite graph** is the bipartite graph in which all possible edges are included and if $|V_1| = m$ and $|V_2| = n$ then it is denoted by $K_{m,n}$. If G has a $u - v$ path, then the distance from u to v, written as $d(u, v)$ is the least length of a $u - v$ path. If G has no such path, then $d(u, v) = \infty$. A graph is said to be **triangulated** if for any vertex u in $V(G)$, there exist v, w in $V(G)$, such that (u, v, w) is a triangle. A **clique** in a graph G is a complete subgraph of G. The order of the largest clique in a graph G is its **clique number**, which is denoted by $\omega(G)$. If a graph can be drawn in the plane without crossing edges then it is called a **planar graph**. For a real number x, the **floor** $|x|$ of x is the greatest integer not exceeding x . The **ceiling** $[x]$ of x is the smallest integer not less than x . For terminology in graph theory we refer Chatrand and West [3,4].

Throughout this paper, even if it is not mentioned explicitly, the underlying field is $\mathbb F$ and $\mathbb V$ is finite dimensional. We investigate the structure and graph theoretical properties like connectivity, hamiltonicity, diameter, girth etc for $\Gamma(\mathbb{V})$.

2 Main Results

Definition 2.1. Let V be a finite dimensional vector space. Then dimension difference interval graph $\Gamma_{\text{DDI}}(\mathbb{V})$ of a vector space V is a graph with the vertex set as the collection of non-trivial proper subspaces of the vector space V and two vertices $W_1 \& W_2$ are adjacent if and only if $(\dim(W_2) - \dim(W_1)) \in$ $[\dim(W_1)$, $\dim(W_2)]$. Without loss of generality we assume that $\dim(W_2) \geq \dim(W_1)$.

Lemma 2.2. If W_1 is a 1-dimensional subspace and W_2 is any subspace of V with dim(W_2) = $m \ge 2$ then W_1 is adjacent to W_2 in $\Gamma_{\text{DDI}}(\mathbb{V})$.

Proof: By the definition of $\Gamma_{\text{DDI}}(\mathbb{V})$, $(\dim(W_2) - \dim(W_1)) = m - 1$. Clearly $m - 1 \in [1, m]$. Hence W_1 is adjacent to W_2 .

Lemma 2.3. Let V be a finite dimensional vector space. Then the following can be observed about the DDI graph $\Gamma_{DDI}(V)$ of V.

- (i) Let S_1 be the set of all 1-dimensional subspaces and S_2 be the set of all proper subspaces of V with dimension greater than 1. Then every element of S_1 is adjacent to every element of S_2 .
- (ii) If dim(V) \geq 3, then $\Gamma_{\text{DDI}}(\mathbb{V})$ is connected.
- (iii) If dim(V) \geq 3, then the diameter, diam($\Gamma_{\text{DDI}}(\mathbb{V})$) = 2.

Lemma 2.4. If $W_1 \& W_2$ are two distinct proper subspaces of V of same dimension then W_1 is not adjacent to W_2 .

Proof: Let $W_1 \& W_2$ be two distinct m-dimensional proper subspaces of V. Suppose W_1 is adjacent to W_2 , then by definition of $\Gamma(W)$, dim $(W_2) - \dim(W_1) = 0 \notin \{m\}$ which is a contradiction. Hence W_1 is not adjacent to W_2 .

Lemma 2.5. Let W be a subspace of a finite dimensional vector space V with $\dim(W) = m > 1$ and let W_1 be any proper subspace of V. Then W is adjacent to to W_1 iff dim $(W_1) \leq \left\lfloor \frac{m}{2} \right\rfloor$ $\frac{m}{2}$ or dim $(W_1) \geq 2m$.

Proof: Let W be a m -dimensional subspace of a n -dimensional vector space V. Let W_1 be any another proper subspace of V .

Case: (i) Let dim $(W_1) \leq \left| \frac{m}{2} \right|$ $\left[\frac{m}{2}\right]$. Then $(\dim(W) - \dim(W_1)) \ge \left[\frac{m}{2}\right]$ $\left[\frac{m}{2}\right] \in \left[\frac{m}{2}\right]$ $\frac{m}{2}$, m $\frac{m}{s}$. Hence *W* is adjacent to W_1 .

Case: (ii) Let dim(W_1) $\ge 2m$. Then $(\dim(W_1) - \dim(W)) \ge m \in [m, 2m]$. Hence W is adjacent to W_1 . Conversely let us assume that W is adjacent to W_1 . Let dim(W_1) = m_1 . By definition of $\Gamma_{\text{DDI}}(\mathbb{V})$,

 $(m_1 - m) \in [m, m_1]$ or $(m - m_1) \in [m_1, m]$. If $(m_1 - m) \in [m, m_1]$ then $m_1 \ge 2m$. If $(m - m_1) \in$ $[m_1, m]$ then $m_1 \leq \frac{m}{2}$ $\frac{m}{2}$. Since m_1 is an integer, $m_1 \leq \left\lfloor \frac{m}{2} \right\rfloor$ $\frac{n}{2}$.

Hence the theorem.

Lemma 2.6. If V is a finite dimensional vector space over a field $\mathbb F$ and W is a subspace of V with dimension greater than 1, then $\Gamma_{DDI}(W)$ is a subgraph of $\Gamma_{DDI}(V)$.

Proof: It follows from the definition of $\Gamma_{\text{DDI}}(\mathbb{V})$ and the fact that every subspace of W is also a subspace of V.

Lemma 2.7. If dim(V) = 2, then $\Gamma_{\text{DDI}}(V)$ is a totally disconnected graph.

Proof: As dim(V) = 2, only non-trivial proper subspaces of V are of dimension 1. Clearly, no two vertices of $\Gamma_{\text{DDI}}(\mathbb{V})$ are adajcent.

Lemma 2.8. For any vector space V with dim(V) > 1, $\Gamma_{\text{DDI}}(V)$ can never be complete.

Proof: Since dim(V) > 1, there exists at least two linearly independent vectors α and β in V. Then W_1 = $\langle \alpha \rangle$ and $W_2 = \langle \beta \rangle$ are two non-trivial proper subspaces of V which are not adjacent. So $\Gamma_{\text{DDI}}(\mathbb{V})$ is not complete.

Lemma 2.9. If V is an n –dimensional vector space with $n \ge 3$, then $\Gamma_{\text{DDI}}(\mathbb{V})$ is not planar.

Proof: Let V be a finite dimensional vector space of dimension at least 3. Then V has subspaces of dimension either 1 or 2. Also we know that the underlying field has at least two elements. Then the number of 1 −dimensional and 2 −dimensional subspaces are at least 7. Thus $K_{7,7}$ is a subgraph of $\Gamma_{\text{DDI}}(\mathbb{V})$. Hence $\Gamma_{\text{DDI}}(\mathbb{V})$ is not planar.

Lemma 2.10. If dim(V) \geq 7, then $\Gamma_{\text{DDI}}(V)$ is triangulated.

Proof: Let V be a finite dimensional vector space of dimension at least 7. Let *W* be any proper subspace of V. To prove that *W* lies on a triangle in $\Gamma_{\text{DDI}}(\mathbb{V})$.

Case 1: dim(W) = 1. Since dim(V) \geq 7, there exists two subspaces $W_1 \& W_2$ of dimensions 2 and 4 respectively. Also $W - W_1 - W_2 - W$ form a triangle.

Case 2: dim(W) = 2. Since dim(V) \geq 7, there exists two subspaces $W_1 \& W_2$ of dimensions 1 and 4 respectively. Also $W - W_1 - W_2 - W$ form a triangle.

Case 3: dim(W) = 3. Since dim(V) \geq 7, there exists two subspaces $W_1 \& W_2$ of dimensions 1 and 6 respectively. Also $W - W_1 - W_2 - W$ form a triangle.

Case 4: dim(W) \geq 4. Then there exists two subspaces $W_1 \& W_2$ of dimensions 1 and 2 respectively such that $W - W_1 - W_2 - W$ form a triangle.

Theorem: 2.11. Let V be an n –dimensional vector space. Let m be the least positive integer such that $n \leq$ 2^m . Then the clique number $\omega(\Gamma_{\text{DDI}}(\mathbb{V})) = m$.

Proof: Let V be an n -dimensional vector space. Let m be the least positive integer such that $n \leq 2^m$.

Let the subspaces $W_1, W_2, ..., W_m$ be of dimension $2^0, 2^1, ..., 2^{m-1}$ respectively. We know that these are pairwise adjacent. Then $\omega(\Gamma_{\text{DDI}}(\mathbb{V})) \geq m$.

Suppose there exist a subspace W_i of V such that $\dim(W_i) = k \neq 2^l$ where $l = 0, 1, ..., m - 1$. (i.e) W_i is a subspace whose dimension is not a power of 2. Therefore $2^j < k < 2^{j+1}$ for some j. Then W_i is not adjacent to W_j for $j = 1, 2, ..., m$. Hence $\omega(\Gamma_{\text{DDI}}(\mathbb{V})) = m$.

Theorem 2.12. Let V be an n –dimensional vector space. Let m be the least positive integer such that $n \leq$ 2^m . Then the chromatic number $\chi(\Gamma_{\text{DDI}}(\mathbb{V})) = m$.

Proof: By Theorem 2.11, $\chi(\Gamma_{\text{DDI}}(\mathbb{V})) \geq m$. For any subspace W of V, colour W with *jth* colour if $2^{j-1} \leq$ $\dim(W) < 2^j$. Clearly no two adjaccent vertices get a same colour. Hence $\chi(\Gamma_{\text{DDI}}(\mathbb{V})) = m$.

REFERENCES

- [1] Angsuman Das, Subspaces Inclusion Graph of a Vector Space, *Communications in Algebra*, 2016, 44:11, 4724-4731.
- [2] P.Balakrishnan and R. Kala, The Order Difference Interval Graph of a Group, *Transactions on Combinatorics*, Vol.1 No.2, (2012), PP 59-65.
- [3] Gary Chatrand and Ping Zhang, *Introduction to graph theory,* Tata McGraw-Hill, India, 2006.
- [4] Douglas. B. West, *Inroduction to Graph Theory*, 2nd edition, Prentice Hall, Upper Saddle River, 2001.