
1 

 

 

 

 

  



                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

2 

 

 

One such open-source Java library is the Chemistry Development Kit 

(CDK), which is useful for chemo- and bioinformatics 
 

DR J NIJALINGAPPA1, DR K SHARANABASSAMMA2 

Assoc. Professor1, Professor2 

niji.jrashi@gmail.com1 sharanabenni.k@gmail.com2 

Department of Chemistry, Proudhadevaraya Institute of Technology, Abheraj Baldota Rd, Indiranagar, Hosapete, 

Karnataka-583225 

Abstract:  

If you're interested in structural chemistry or bioinformatics, you may get your hands on the open-source 

Chemistry Development Kit (CDK) collection of Java programs. Its design, features, and development as 

an open-source project by a group of worldwide academic and business partners are detailed. Molecular 

informatics procedures, structures, 2D and 3D chemical structure rendering, input/output routines, SMILES 

creation and parsing, ring searches, isomorphism verification, structure diagram production, etc. are all 

provided by the CDK. Interested users and potential contributors are provided with access information and 

application possibilities.. 

 

1. INTRODUCTION 

Whoever pursues the endeavor of creating a larger software package in chemoinformatics or computational chemistry from 

scratch will soon be confronted with the Syssiphus task of implementing the standard repertoire of chemoinformatical 

algorithms and components invented during the last 20 or 30 years. The obvious workaround for this problem are 

commercially available chemoinformatics libraries that have been developed by companies such as MDL Information 

Systems, Inc., Daylight Chemical Infor- mation Systems, Inc., Advanced Chemistry Development, and certainly many others. 

A scientist in an academic environment, however, often feels obliged to openly share his results with the scientific 

community. Using proprietary components for software development makes it impossible to do so. 

Generally, scientific software is too often closed source, leaving the user with a black box performing magical operations. 

Perceived as being counterproductive for the overall scientific progress, this trend fortunately seems to change. Sharing of 

ideas and results within communities is probably the most central paradigm in science. By publishing his results a scientist allows 

his colleagues to verify and build upon his results, thereby advancing the particular field as a whole [If I have seen further it is by 

standing on the shoulders of giants. - Isaac Newton]. One of the motivations for such contributions, besides the pure scientific 

curiosity, is, of course, the gain of social recognition and reputation among his peers. 

In recent years the ideas sketched above have been part of the open-source revolution that took place in the world 

of software development, most widely recognized through the great success of the free Unix-like operating system 

GNU/Linux, a collaborative work of many individuals and organizations, including the Free Software Foundation lead by 

Richard Stallman and the Finish computer science student Linus Torvalds who started the project. According to several essays 

on this subject, open-source software, for which, by definition, the source code is always freely available to the public,1 has a 

number of intriguing benefits. 

Most importantly, if the community of users is large enough and everyone can look at the sources and change them, it 

should not take too long until a particular software error is found and fixed. “Given enough eyeballs, all bugs are shallow”, 

as Eric Raymond put it in his widely recognized essay “The Cathedral and the Bazaar”,2 in which he analyses the mechanisms 

and principles of the open source movement. Further, other scientists can easily build on existing results. Credit can still be 

given in the appropriate form, because open-source software is by no means freeware or in the public domain. Quite the 

contrary, the package as a whole as well as each piece of source code is labeled with a clear copyright notice, stating the 

name of the copyright holder and the nature of the license. This copyright notice must not be removed. Additional comments, 

however, regarding the changes and improvements made by others can, of course, be added. Substantial improvements to an 

existing piece of code by someone other than the copyright holder will usually lead to something like team formation, including 

appropriate copyright changes. This is especially important for academic scientists, who need to be able to point out their 

contributions 

to a particular field. 

Considering the virtues of open-source software on one hand and the scientific tradition on the other hand, we started the 

CDK project under terms of a liberal open-source license.3 We use SourceForge,4 a Web based open-source development 

platform, for coordinating the contributions from about 10 developers from about five different countries. A greater number of 

mailto:niji.jrashi@gmail.com
mailto:sharanabenni.k@gmail.com


                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

3 

 

people have subscribed to the developers 

mailing list and either listen silently or contribute by making feature requests or critical comments. SourceForge provides all the 

tools which are generally considered to be indispen- sable components for coordinating the contributions from developers and 

users in larger software projects, as there are Webspace, mailing lists, bug trackers, software versioning systems, release 

managers, etc. 

This article is not only to describe the CDK project in scientific and software-technological terms but also to promote the 

underlying development model. The authors think that these principles form a paradigm for scientific software development 

where scientists can truly exploit the benefits of the Internet for a distributed collaboration that would not have been possible 

in pre-Internet times. 

We are explicitly not claiming to give a general overview of chemical open source software. This will form an article of its 

own. However, we will give a synopsis on open source Java software in the following section instead. 

The interested reader is cordially invited to visit the CDK project pages at http://cdk.sourceforge.net, get in touch with the 

developers, make use of the CDK package, and ultimately to extend its functionality. 

 
2. OPEN SOURCE JAVA SOFTWARE IN CHEMISTRY 

A number of libraries written in Java are freely available in binary form, but they do not include access to use and extend 

the source code.5-7 Libraries for other computer languages have been described in the literature but are, to our knowledge, not 

available to the public.8 

To give an overview of the open source activitities in chemistry, we analyzed the open source projects registered at 

SourceForge.4 This Website has about 40 projects regis- tered in the field of molecular chemistry, as found with a search on 

keywords such as molecule, molecular, chemistry, and chemical. Many projects are inactive: some are only registered but show 

no activity at all, and some showed activity in the past but never released software in binary form or source code. The number of 
active projects is about 25- 30. 

Of these projects 14 were found that use the Java programming language. Three of these are inactive for a long period and do 

not provide downloads. Two are succeeded by this project,9,10 and four are based on CDK.11-15 Four projects are interesting to 

note: MolMaster having a BSD license16 and including visualization of isosurfaces, jVisu- alizer having the GPL license17 for 

analyzing NMR cou- plings, CML having an Artistic License18 with tools around the Chemical Markup Language,19 and 

JOELib having the GPL license20 with an extensive file IO library based on OpenBabel21 and a library for molecular 

descriptors. Note that the first two are not really libraries but applications instead. CMLDOM and JOELib, however, are 

libraries with similar functionality for storing chemical content in memory. 

 
3. THE ORIGIN OF THE CDK 

The CDK originated as a support project for a couple of different chemoinformatics software packages, namely a structure 

editor,11 a Web database for organic compounds and their NMR chemical shifts,14 a program for computer assisted structure 

elucidation,22 and a 3D structure viewer and analyzer,13 which is still being ported to the CDK. 

The authors of these programs generally agree on the benefits of the programming language Java, as there are as follows: 

clear object-oriented design, platform-indepen- dency, and the fact that it has become an important standard for client- and 

server-side applications on the Web. Since most of the scientifically interesting applications in chemistry have a 

computationally demanding kernel, they benefit from a client/server architecture because the server part can then be run on a 

powerful machine, while a user-friendly (Web-) interface can be used on whatever client machine the user chooses. These 

demands can be met much easier if one can still resort to a single programming language for the implementation and so we 

consider Java to be the program- ming language of choice not only for chemoinformatics and computational chemistry but also 

for scientific applications in general. 

Concerns are frequently raised with respect to the perfor- mance of Java. However, the language structure itself, compared 

for example with C++, provides no good reason for Java having a generally lower performance than other languages more 

frequently used in high performance com- puting. Indeed, great efforts have been made to increase Java runtime performance 

and so, today, given a proper imple- mentation and using the right runtime environment, server- side Java code does not need 

to be slower than C++ with the same scope. We would like to point the reader’s attention to a whole issue of the IBM 
systems journal dedicated to the subject of high performance computing in Java.23

 

 
4. DEVELOPMENT MODEL 

To participate in CDK development, the interested indi- vidual needs to register with SourceForge (SF) to receive a free 

SF account and subscribe to the developers mailing list cdk-devel@lists.sourceforge.net. He or she then contacts one of the 

project administrators, who then adds the new member to the project’s developers list. Besides good Java program- ming skills, 

a working knowledge for the Concurrent Versions System (CVS) is needed. CVS is the most widely used system for version 

management in the Open Source community, which greatly facilitates the coordination of multiple developers working on 

the same source tree. 

 

 

http://cdk.sourceforge.net/
mailto:cdk-devel@lists.sourceforge.net


                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

4 

 

 

 

 

 

It is quite common in computer science to write a requirements specification before coding is started. Such a specification 

describes the intended behavior of the software (classes in this case) and can be used by developers to check the implementation 

and by users to see how those classes can be used. When the CDK was designed, such specification was only partly made using 

Unified Modeling Language (UML) diagrams.24 Currently we use Requests For Comment (RFC) documents for proposing a 

new specification to which the CDK library must conform. These RFC, which are a long time Internet standard for decision 

making, are discussed on the developers mailing list after which they are marked as final after majority voting. 

 
5. PROJECT CONVENTIONS 

In Java, source code is organized in so-called packages, which often (but not neccessarily) follow a naming scheme of 

something like an inverted Internet address. Putting a class such as Atom into a uniquely named package prevents class name 

collisions in cases where another library, used together 

 

 

Figure 1. UML diagram, showing the inheritance hierarchy and the dependencies of the fundamental classes within the CDK. with the 

CDK, also contains an Atom class with different function. Since the CDK is part of the OpenScience project,25 the 

CDK source tree is organized in packages under the org.openscience.cdk root package. Frequently, a new devel- 

oper is interested in adding a particular functionality to the CDK, for example the capability for isomorphism and 

automorphism checking. He discusses the implications of his endeavor with the others CDK developers on the 

mailing list. Taking into account the suggestions, caveats, etc., of his codevelopers, he would then create a new 

subpackage org.openscience.cdk.isomorphism and add his contribution under this part of the source tree. 
An important part of the CDK development effort is Unit Testing, which is based on the idea of writing easily repeatable 

tests for smallest units of the software package in question. Whenever a programmer adds a new module with new 

functionality to the CDK source tree, he is expected to add a test to the org.openscience.cdk.tests package, adhering to a 

particular naming convention. The unit testing itself is based on the JUnit package,26 which makes it easy to run a fully 

unattended test for the whole CDK package. This has proven to be of great value for such a distributed programming effort 

like the CDK. Especially if a developer changes something within the CDK core classes, a full JUnit test run of the CDK tests 

will show him within a few seconds whether his changes broke something or not. Further, each of these little test snippets is an 

instructive example on how to use a particular CDK module. 

Indispensable for a library is documentation. The CDK is documented using the JavaDoc systemsan integral part of the Java 

programming language. Using special tags, the code is documented directly in the source code, from which documentation can 

be produced automatically in various formats, most importantly as Web pages. We are using source code metrics to constantly 
measure the amount of docu- mented source code statements, and we try to keep this percentage as high as possible. In 

addition to the JavaDoc API documentation, the user is guided by a few introductory manuals. 

It should also be mentioned that the CDK’s software architecture has been independently chosen as subject of an M.Sc. 

thesis at the Technion (Israel Institute of Technol- 

ogy),27 focusing on automated methods for code inspection and review. This is a common industrial process by which source 

code is usually read manually to find errors, potential improvements, dependencies, etc. The thesis focuses on automizing the 

formal concept analysis using concept lat- tices28 for the review of individual java classes. Concept analysis is a mathematical 

classification technique, which is used for different problems in software research. This methodology is applied in three 



                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

5 

 

stages: (1) understanding the public interface of the class for use as a black box, (2) trying to reason about the design and 

possible errors in the class based on its lattice, and (3) inspecting actual source code. The first two stages are done without 

even having the source code: the methods and fields are determined by reverse engineering of the compiled class files. We 

have already received valuable input from this related project which will help us to resolve design flaws in our library. 

 
6. DESCRIPTION OF THE LIBRARY’S FUNCTIONALITY 

6.1. The Core Classes. The classes contained in the root section of the CDK’s package hierarchy are all formalized 

representations of basic chemical concepts such as atoms, bonds, molecules, etc. Figure 1 shows an UML diagram explaining 

the inheritance hierarchy and the dependencies between the fundamental classes of the CDK. The UML diagrams shown in 

this article depict the relationship of only the core classes. They are thus edited and do only show a subset of their true 

interclass relationships. They show the central role of the ChemObject class, which is the superclass of all other classes and 

provides methods for storing even complex properties for any derived CDK object. 

The first and probably most obvious inheritance chain to be mentioned in the core classes it that of Atom extending 

AtomType extending Isotope extending Element. This is not only logical from a chemical point of view but also provides the 

basis for a simple mechanism for the creation of Atoms, AtomTypes, Isotopes, and Elements based on subclasses of a single 

IsotopeFactory tool class, which will be discussed below. Placing the Atom in a long chain of inheritance provides central 

access points to the different levels of 

 

 

Figure 2. UML diagram, showing the inheritance hierarchy and the dependencies of classes group based on the AtomContainer concept. 
 



                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

6 

 

information. While the Element, for example, provides access to the symbol or the atomic number, some AtomType can further 

distinguish between the state of hybridization of an Atom or some other distinction a force field might need. 

A further level of abstraction is incorporated by the AtomContainer and the ElectronContainer. The Electron- Container 

forms the base for constructs such as Bonds and Orbitals, whereas the AtomContainer is the envisioned storage for Atoms 

together with their Bonds and is the superclass for Rings, Molecules, and Substructures. 

To support higher level concepts such as molecular ensembles or reactions, the CDK core is complemented by classes 

which group molecules into higher order constructs, like SetOfMolecules, ChemSequence, ChemModel, and ChemFile. 

For clarity, the relationship of ChemObject and the AtomContainer has been moved to an additional UML diagram shown 

in Figure 2. 

It shows how Molecules are contained in a SetOfMol- ecules, which is part of a ChemModel. ChemModels are meant to 

store the molecular information of the state of a chemical systems at a given point in time. To allow for the modeling of 

changes in time, we introduced the possibility of arranging various ChemModels into a ChemSequence. The ChemFile class is 

designed as the top level container, which can contain all the concepts stored in a chemical document among which one or 

more ChemSequences. 

The Polymer class extends Molecule and provides con- venient access to the Monomers it consists of. The Monomer itself is 

implemented as an AtomContainer. A subclass of Polymer is the BioPolymer used for representing protein and DNA molecules. 

The Polymer design allows BioPolymers to treat each amino acid as an AtomContainer. 

6.2. 2D Structure Graphical Handling. The ability to display and manipulate 2D drawings of chemical structures is one 

of the most important features of any chemoinfor- matics-related program. This includes the capability of generating 

coordinates for those chemical structures which have for example been generated by structure generator as coordinateless, 

chemical graphs. The details for this latter step are discussed in Section 6.4. 

The Model-View-Controller paradigm (see for example ref 29) is used in the CDK library design wherever applicable. The 

classes for 2D structure graphical handling, for example, work on top of a ChemModel whose content they display and 

manipulate. A Renderer2D class produces a 2D drawing comparable to those produced by the major commercially available 

products. This view can be custom- ized by altering the standard settings of a Renderer2DModel object. If the pure display is to 

be complemented by an option to manipulate the drawing, a Controler2D can be added to the setup. Its settings, again, are 

determined by a Controler2DModel and can be altered, for example, by using setDrawNumbers(true) in order to display atom 

numbers annotated to the structure. The Controler2D is an adapter to the available input devices, typically mouse and 

keyboard, and translates input into changes to the underlying models, which again are reflected by changes in the view 

produced by the Renderer2D. A simple resulting application is shown in Figure 3. 

6.3. 3D Structure Handling. To provide high performance 3D graphics, the Java3D API is used within the CDK. This, 

however, makes CDK-based 3D applications no longer platform independent. This dependency originates from Java3D API 

relying on OpenGL or DirectX for the sake of 

 

 

Figure 3. Renderer2D and Controller2D cooperating in a simple, CDK-based version of JChemPaint. JChemPaint supports interna- 
tionalization, with this example showing a dutch interface. 

 

higher performance. SUN microsystems does only provide the Java3D for Windows (both OpenGL and DirectX), Solaris and 

SGI IRIX, whereas a Linux version is developed by Blackdown30 and available for a variety of architectures. 

In regard to loosing the platform independency the CDK does also contain classes for 3D rendering which are not based 

upon the Java3D API. Together with the separation of the rendering classes, due to the Model-View-Controller paradigm, this 

leads to the following four fundamental classes for 3D rendering: Renderer3D, Renderer3DModel, Accel- eratedRenderer3D, 

and AcceleratedRenderer3DModel, the latter two based upon Java3D. 



                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

7 

 

 

 

 

 

6.4. Structure Diagram Layout. Key fields of chemoin- formatics, like virtual combinatorial chemistry, virtual screen- ing, or 

computer-assisted structure elucidation, frequently handle chemical structures as one-dimensional graphs. These graphs are, for 

example, products of structure generators which use graph theoretical techniques to exhaustively and irredundantly generate all 

constistitutional isomers which are in agreement with a given molecular formula. In any of these programs, however, comes the 

point where, after a selection during a virtual screening, for example, the successful candidate structure(s) needs(s) to be 

presented to a chemist. At this point, a tool is needed that generates 2D or 3D coordinates to produce the kind of depiction a 

chemist is used to. This process has been termed Structure Diagram Generation.31 While 3D model builders such as 

CORINA32 are on our wishlist for the future and have not yet been implemented, the CDK features a 2D structure diagram 

generator, which has been written from scratch and which can easily be seen as one of the finest and most useful parts of the 

CDK, since most of its applications require structure diagram generation at several stages. 

6.5. Graph Invariants. This package contains a few classes for the computation of graph invariants such as Wiener 

Indices,33 Morgan’s extended connectivity (EC) indices,34 and others.35 Morgan’s EC indices are, for example, used for canonical 

labeling of compounds. This package is likely to be one of the hot spot for future developments, since many chemoinformatics 

applications, like (quantitative) structure activity relationship ((Q)SAR) computations, do 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A rings system parsed from a SMILES, analyzed by Figueras’ SSSR algorithm and displayed by the MoleculeViewer class. The 
process takes 300 ms on a 600 MHz Pentium with Windows XP and JDK 1.3.1. 

 

often rely on calculating various combinations of graph invariants of different types. 

6.6. Structure Generators. This package holds some simple structure generators which are used by the SENECA system 

for computer-assisted structure elucidation.22 The class SingleRandomStructureGenerator can be used to gener- ate a totally 

random structure from the constitutional space given by a certain molecular formula. Based on this randomly generated 

structure one can then use RandomGenerator to make small, random moves in constitution space, based on an algorithm 

suggested by Faulon.36 If such a generator is combined with a target function and simulated annealing protocol, one can 

effectively search constitution space for structures with certain desired properties, provided that these properties can be reliably 

backcalculated from a given constitutional formula. 

To be able to build a structure generator for chemical graphs based on evolutionary algorithms (like the well-known genetic 

algorithm), we also included a CrossOverMachine, which accepts two chemical graphs in the form of Atom- Containers and 

produces two offsprings. Genetic Algorithms are population based methods which produce new offsprings for the next 

generation by a carefully chosen combination of mutation and crossover procedures, applied to the current population. The 

CrossOverMachine does thus complement the mutation operation used in the RandomGenerator class. 

6.7. Ring Searches. John Figueras’ fast algorithm for finding the Smallest Set of Smallest Rings (SSSR) has been 

implemented and is used for example by the structure diagram generation package.37 Especially large condensed ring 

systems, for which the process of coordinate generation could take up to a minute due to a slow depth first ring perception 



                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

8 

 

algorithm in older systems,38 can now be layed out within fractions of a second as shown in Figure 4. Further this package 

contains a class for partioning a given ring systems into AtomContainers, one for each ring. 

In other applications, like aromaticity detection, for example, it is essential to compute the Set of All Rings (SAR). While 

procedures have been published to produce the SAR from a SSSR, it is computationally more efficient 



                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

9 

 

to use specialized algorithms for this purpose. The CDK contains an implementation of a fast and efficient algorithm given by 

Hanser et al.39
 

6.8. Aromaticity Detection. There are various definitions of aromaticity and at least as many ways of detecting aromaticity 

according to these definitions. This package is the intended container for all of them and does currently hold an 

implementation of a HueckelAromaticityDetector class. Based on the SAR detection algorithm by Hanser et al. (see section 

6.7) this class starts with the largest detected ring, counts the number of alternating double or triple bond electrons, and does 
also take into account free electron pairs of heteroatoms. It then checks whether the ring contains 4n  + 2  π-electrons,  

according  to  the  well-known  Hückel rule. The ring, all its atoms, and bonds are marked as aromatic, and the search continues 

with the remaining rings of equal or smaller size, leaving out those rings that are completely part of an already detected larger 

aromatic system. 

6.9. Isomorphism. Being able to determine if two chemi- cal structures are identical or whether one structure is a subgraph 

of another structure is one of the most important capabilities of a chemoinformatics library. The Isomorphism subpackage 

contains a versatile module for Maximum Common Substructure (MCSS) Searches. Since MCSS determination is the most 

general case of graph matching, it can be used to determine structure identity and to do subgraph matching and maximum 

common substructure searches. 

6.10. File Input/Output. File input and output is general- ized in CDK. All file i/o classes implement either ChemOb- 

jectReader or ChemObjectWriter. Each file format is rep- resented by two separate classes implementing one of these 

interfaces. 

CDK currently supports IO classes for XYZ, MDL molfile,40 PDB,41 and CML.42 The latter format was devel- oped by 

Murray-Rust and Rzepa as the first XML based file format for chemical content. The CDK contains both an input and output class 

for this format. The CML input reader uses an alternative to Murray-Rust’s DOM approach and is based on SAX.43
 

6.11. Interaction with other Java Libraries. Besides file i/o, CDK supports a second method to exchange data with other 

programs and libraries. The interface to other libraries makes it possible to combine methods from both libraries giving access 

to a larger set of functionality. CDK provides direct conversion of CDK classes to JOELib20 classes. Support for CMLDOM19 

is planned. 

6.12. SMILES. Simplified Molecular Line Entry Speci- fication (SMILES) provides string representations of mo- lecular 

constitutions.44 Due to their compactness and relative simplicity they are now widely used as an interchange format for 

coordinateless molecular structures. Based on a specifica- tion for unique (canonical) SMILES,45 it is also possible to perform 

graph isomorphism checks. The CDK features a generator for canonical SMILES, written to comply with the rules published by 

the Daylight Inc. founders. While the SMILES generator implements all of the published SMILES standard including chirality, 

the SMILES parser in the CDK package only complies to the (slightly extended) Super Simplified SMILES specification46 which 

is sufficient to code most organic structures. 

6.13. Fingerprints. Fingerprinting is nowadays an indis- pensable tool for judging molecular similarity, as a prefilter for 

isomorphism checking and thus for structure searching in databases. Here as well as in the case of SMILES an own 

subpackage for this class of algorithms is justified because there are various ways of computing fingerprints. By allowing the 

addition of different fingerprinters instead of just having one monolithic org.openscience.cdk.tools.Fin- gerprinter we give the 

user the freedom of choosing whatever methods yields the best performance for his case. The Fingerprinter class in the CDK 

produces Daylight-type fingerprints.47 It works by running a breadth-first search, starting at each atom in the molecule, 

thereby producing string representations of paths up to the length of six atoms. For each of theses SMILES-like strings, hash 

codes are computed, using the standard string hashing algorithm provided by the Java language. With these hash codes, a 

pseudorandom number generator with a default working range of [0-1023] is seeded and the first random number is 

retrieved. This number indicates a position in a fingerprint bitstring of length 1024, which is then set to “1”. Based on the 

entirety of all computed paths from the molecule, a molecular fingerprint is obtained in the form of this bitstring. 

6.14. Tools. The tools package contains utility classes for all those cases that did not justify the creation of a dedicated 

package. The IsotopeFactory, for example, can return pre- configured instances of Elements and Isotopes for a given element 

symbol or a given atomic mass. 

The ConnectivityChecker class tests whether a given chemical graph is connected, i.e., whether there is a bond path 

between every possible pair of atoms in the graph and, in the case of a nonconnected graph, it can return a Vector with the 

disjunct pieces of the graph, stored in AtomCon- tainer objects. Related to ConnectivityChecker is the Path- Tools class 

which, for example, provides methods for finding the shortest path between to given atoms in a molecule. 

The MFAnalyser class has methods of returning the molecular formula of a given Molecule object and for creating an 

unbonded AtomContainer object from a given molecular formula string. The HOSECodeGenerator produces HOSE codes48 for 

each atom in a given AtomContainer. By feeding these HOSE codes into the BremserOneSphere- HOSECodePredictor class, 

one can predict expectation ranges for carbon-13 NMR chemical shifts.49 

 

 

 

 

 

 



                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

10 

 

 

 

 

 

 
7. RESULTS 

The CDK is now the basis for a number of software projects. The chemical editor JChemPaint11 which takes advantage of 

the CDK and for which the CDK’s Model- View-Controller mechanisms have been implemented is again just a support tool 

for higher level applications such as the Web database NMRShiftDB for organic compounds and their NMR chemical shifts, 

or SENECA, a program for computer assisted structure elucidation.22
 

While allowing the fast assembly of such large monolithic applications such as SENECA or NMRShiftDB, the true strength 

of the CDK lies in its ability to serve as a chemoinformatician’s workbench. By just writing a few lines of code, one can 

quickly test new ideas or modify existing CDK based applications to make them suit other needs. 

 

 

Figure 5. A CDK code snippet illustrating the use of SmilesParser and StructureDiagramGenerator is shown followed by its output. 
 

The following code snippet illustrates how one can quickly parse a list of SMILES strings into AtomContainers, produce 2D 

coordinates, and display the results in a MoleculeList- Viewer. 

 
8. CONCLUSION 

We have presented details of a new open-source Java library facilitating the implementation of software packages in 

chemoinformatics. The CDK is freely available50 under the terms of the GNU Lesser General Public License (LGPL)3. The 

source code may thus be downloaded and improved or adapted for specific needs. In contrast to the famous GNU General 

Public License (GPL)51 the LGPL allows for the use of the CDK in proprietary software packages. While any use of the CDK 

for proprietary and closed-source project is thus welcome, we also highly appreciate feedback and any potential backflow. 

Companies are using the CDK for commercial projects, such as SafeBase, a theragenomics knowledge management system on 

adverse drug reactions.52 At the IBM Germany Develop- ment Lab in Böblingen an Extreme Blue internship project group has 

been started to write a CDK-based open source 2D/3D editor for chemical structures. The company IXELIS, situated in 

Strasbourg, France, is working on a global semantic information system applied to scientific knowledge and has contributed the 

MCSS code, which came into existence during their work with the CDK. 

Further, our chemoinformatics software kit is the basis for other open-source projects, like the SENECA system for 

computer-assisted structure elucidation22 and NMRShiftDB,14 a free database of organic chemicals and their NMR data. 

Besides its proven usability in research and production quality scientific software, the CDK has also become a valuable tool 

for teaching chemoinformatics. At least one of our authors (C.S.) is using the software package in lectures to demonstrate many 

standard chemoinformatics algorithms on the functionality level as well as on the source code level. Due to the inherent 

modularization of the object oriented language Java, most of the classes and methods are concise 
and easy to understand. 

It should be mentioned that we have experienced, albeit on a smaller scale than the large open-source projects, the benefits 

and the fascination of the principles mentioned in the Introduction. Based on this experience, this article is also supposed to 

promote these ideas and to attract further 

contributors for our project. The inspiring experience is that as soon as a certain amount of material has accumulated and a 

certain amount of publicity has been gained, an open-source project becomes something like a self-runner, contributors start 

adding their own subprojects, and new ideas are integrated which would probably never have been borne in mind if the CDK 

were created by a single organization and even individual. Of course, such a development model also has disadvantages. It is 

probably much more difficult to adhere to certain quality standards, to respond to deadlines (but on the other hand, there 

rarely are any in such small projects), and to do strategic planning. It has been shown, however, that these problems can be 



                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

11 

 

overcome. 

 
ACKNOWLEDGMENT 

The authors would like to thank all members of the CDK project for their contributions, corrections, and helpful comments. 

 
REFERENCES AND NOTES 

 
(1) The Open Source Initiative (OSI), http://www.opensource.org (accessed on Aug 2002), 2002. 

(2) Raymond, E. S. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental ReVolutionary; O’Reilly and Associates: 
Sebastopol, CA, 1999. 

(3) GNU Lesser General Public License - GNU Project - Free Software Foundation (FSF), http://www.gnu.org/licenses/lgpl.html (accessed on Aug 2002), 
2002. 

(4) SourceForge.net, http://www.sf.net/ (accessed on Aug 2002), 2002. 

(5) Rzepa, H.; Tonge, A. VChemLab: A Virtual Chemistry Laboratory. The Storage, Retrieval, and Display of Chemical Information Using Standard 
Internet Tools. J. Chem. Inf. Comput. Sci. 1998, 38, 1048- 1053. 

(6) Csizmadia, F. JChem: Java Applets and Modules Supporting Chemical Database Handling from Web Browsers. J. Chem. Inf. Comput. Sci. 2000, 40, 
323-324. 

(7) Blauch, D. Java Classes for Managing Chemical Information and Solving Generalized Equilibrium Problems. J. Chem. Inf. Comput. Sci. 2002, 42, 143-
146. 

(8) Bauerschmidt, S.; Gasteiger, J. Overcoming the limitations of a connection table description: A universal representation of chemical species. J. Chem. 
Inf. Comput. Sci. 1997, 37, 705-714. 

(9) The CompChem libraries, http://compchem.sourceforge.net/ (accessed on Aug 2002), 2002. 

(10) The JMDraw Structure Diagram Generation Engine, http:// jmdraw.sourceforge.net/ (accessed on Aug 2002), 2002. 
(11) Steinbeck, C.; Krause, S.; Willighagen, E. JChemPaint - Using the Collaborative Forces of the Internet to Develop a Free Editor for 2D Chemical 

Structures. Molecules 2000, 5, 93-98. 

(12) The JChemPaint Structure Editor, http://jmdraw.sourceforge.net/ (ac- cessed on Aug 2002), 2002. 

 
(13) The Jmol 3D Molecular Visualization Software, http:// jmol.sourceforge.net/ (accessed on Aug 2002), 2002. 
(14) Kuhn, S.; Krause, S.; Steinbeck, C. NMRShiftDB - An Open-Access, Open-Submission, Open-Source Database for Organic Structures and their NMR 

data. 2002, Manuscript in preparation. 
(15) The NMRShiftDB NMR Database, http://www.nmrshiftdb.org/ (ac- cessed on Aug 2002), 2002. 
(16) The MolMaster Molecular Visualization Package, http:// molmaster.sourceforge.net/ (accessed on Aug 2002), 2002. 
(17) The JVisualizer NMR Analysis Package, http://jvisualizer. sourceforge.net/ (accessed on Aug 2002), 2002. 
(18) The Chemical Markup Language Supporting Software Pages, http:// cml.sourceforge.net/ (accessed on Aug 2002), 2002. 
(19) Murray-Rust, P.; Rzepa, H. Chemical Markup XML, and the Worldwide Web. 2. Information Objects and the CMLDOM. J. Chem. Inf. Comput. Sci. 

2001, 41, 1113-1123. 
(20) JOELib - a java based computational chemistry package, http:// joelib.sourceforge.net/ (accessed on Aug 2002), 2002. 
(21) The OpenBabel Chemical File Format Conversion Package, http:// openbabel.sourceforge.net/ (accessed on Aug 2002), 2002. 
(22) Steinbeck, C. SENECA: A Platform-Independent, Distributed and Parallel System for Computer-Assisted Structure Elucidation in Organic Chemistry. 

J. Chem. Inf. Comput. Sci. 2001, 41, 1500-1507. 
(23) IBM Systems Journal - Java Performance, 2000. 
(24) Stevens, P.; Pooley, R. Using UML: software engineering with objects and components; Object Technology Series Addison-Wesley: 1999 Updated 

edition for UML1.3: first published 1998 (as Pooley and Stevens). 
(25) The OpenScience Project, http://www.openscience.org/ (accessed on Aug 2002), 2002. 
(26) JUnit, Testing Resources for Extreme Programming, http:// www.junit.org/ (accessed on Aug 2002), 2002. 
(27) Dekel, U. Personal Communication, 2002. 
(28) Ganter, B.; Wille, R. Concept Analysis: Mathematical Foundations; 

Springer-Verlag: Berlin-Heidelberg, 1999. 
(29) Krasner, G.; Pope, S. A Cookbook for using the Model-View- Controller User Interface Paradigm in Smalltalk-80. JOOP 1988, 29- 49. 
(30) Java-Linux, http://www.blackdown.org/ (accessed on Aug 2002), 2002. 
(31) Helson, H. Structure Diagram Generation. ReV. Comput. Chem. 1999, 

13, 313-398. 
(32) Gasteiger, J.; Rudolph, C.; Sadowski, J. Automatic Generation of 3D- Atomic Coordinates for Organic Molecules. Tetrahedron Comput. Method. 1990, 

4, 537-547. 
(33) Wiener, H. Correlation of Heat of Isomerization and Difference in Heat of Vaporization of Isomers Among Paraffin Hydrocarbons. J. Am. Chem. Soc. 

1947, 69, 17-20. 
(34) Morgan, H. L. The Generation of a Unique Machine Description for Chemical Structures - A Technique Developed at Chemical Abstracts Service. J. 

Chem. Doc. 1965, 5, 107-113. 
Hu, C. Y.; Lu, L. On highly discriminating molecular topological index. 

J. Chem. Inf. Comput. Sci. 1996, 36, 82-90. 

(35) Faulon, J.-L. Stochastic Generator of Chemical Structure. 2. Using Simulated Annealing To Search the Space of Constitutional Isomers. J. Chem. Inf. 
Comput. Sci. 1996, 36, 731-740. 

(36) Figueras, J. Ring Perception Using Breadth-First Search. J. Chem. Inf. Comput. Sci. 1996, 36, 986-991. 

(37) Bley, K.; Brandt, J.; Dengler, A.; Frank, R.; Ugi, I. Constitutional Formulae generated from Connectivity Information: the Program MDRAW. J. 
Chem. Res. (M) 1991, 2601-2689. 

(38) Hanser, T.; Jauffret, P.; Kaufmann, G. A new algorithm for exhaustive ring perception in a molecular graph. J. Chem. Inf. Comput. Sci. 1996, 36, 1146-
1152. 

(39) Description of Several Chemical Structure File Formats Used by Computer Programs Developed at Molecular Design Limited, 1992 An updated 
online version of this document can be found on http:// www.mdli.com/downloads/literature/ctfile.pdf. 

(40) Protein Data Bank Atomic Coordinate and Bibliographic Entry Format Description, 1985. 

(41) Murray-Rust, P.; Rzepa, H. Chemical Markup XML, and the Worldwide Web. 1. Basic Principles. J. Chem. Inf. Comput. Sci. 1999, 39, 928-942. 

(42) Willighagen, E. Processing CML conventions in Java. Internet J. Chem. 
2001, 4, 4. 

(43) Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 
1988, 28, 31-36. 

(44) Weininger, D.; Weininger, A.; Weininger, J. SMILES. 2. Algorithm for Generation of Unique SMILES Notation. J. Chem. Inf. Comput. Sci. 1989, 29, 
97-101. 

(45) SMILES Home Page, http://www.daylight.com/dayhtml/smiles/ (ac- cessed on Aug 2002), 2002. 

http://www.opensource.org/
http://www.gnu.org/licenses/lgpl.html
http://www.sf.net/
http://compchem.sourceforge.net/
http://jmdraw.sourceforge.net/
http://www.nmrshiftdb.org/
http://jvisualizer/
http://www.openscience.org/
http://www.junit.org/
http://www.blackdown.org/
http://www.mdli.com/downloads/literature/ctfile.pdf
http://www.daylight.com/dayhtml/smiles/


                       Review of International Geographical Education                              ©RIGEO, Volume 12 (3) Aug 2022 

 

12 

 

(46) James, C. A.; Weininger, D.; Delany, J. Daylight Theory Manual, http://www.daylight.com/dayhtml/doc/theory/theory.toc.html (accessed on Aug 2002), 
2000. 

(47) Bremser, W. HOSE - A Novel Substructure Code. Anal. Chim. Act. 
1978, 103, 355-365. 

(48) Bremser, W. Expectation Ranges of 13-C NMR Chemical Shifts. 

Magn. Reson. Chem. 1985, 23, 271-275. 

(49) The Chemical Development Kit, http://cdk.sf.net/ (accessed on Aug 2002), 2002. 
(50) GNU General Public License - GNU Project - Free Software Foundation (FSF), http://www.gnu.org/licenses/gpl.html (accessed on Aug 2002), 

2002. 

(51) TheraSTrat - Taking drug safety a step further, http:// www.therastrat.com/ (accessed on Aug 2002), 2002. 

CI025584Y 

http://www.daylight.com/dayhtml/doc/theory/theory.toc.html
http://cdk.sf.net/
http://www.gnu.org/licenses/gpl.html
http://www.therastrat.com/

