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1. Introduction 

In this paper we consider the following nonlinear Volterra Hammerstein 

integral equation 

s 

y(s) = x(s) +  
0 

k(s, t)g(t, y(t)) dt, s ∈ [0, 1], (1) 

where x, k and g are known functions. The function g(t, y(t)) is nonlinear 

in the unknown function y. 

∫ 
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Applying Green’s function method on a nonlinear boundary value prob- 

lem leads to an integral equation of Hammerstein type. Also in studying 

some phenomena in various branches of science and engineering, one may 

encounter integral equations of Hammerstein type [4, 5]. 

There are numerous papers which are devoted to study the solution of 

these family of nonlinear integral equations. The projection methods 

such as Galerkin and collocation methods and their variants are well 

known and popular methods which have been used to solve the Ham- 

merstein integral equations numerically see for example [16, 2, 12, 21, 6, 

13, 24]. These methods convert the integral equation into a system of al- 

gebraic equations which is usually solved by an iterative technique. Some 

modifications of these methods have allocated much attention to it- self, 

for example in [17], Kumar and Sloan presented a new collocation 

method to solve Fredhlom-Hammerstein integral equations. Several pa- 

pers have used the Kumar-Sloan technique by different basis functions 

such as orthogonal functions and wavelets [9, 10, 23]. In addition to these 

methods, other approaches have been used to estimate the solution of the 

Hammerstein integral equations such as degenerate kernel method [14], 

iterated degenerate kernel method [15], a variation of the Nystrom 

method [18], Adomian decomposition method [1], etc. 

Successive approximation method (Picard iterative method) is a classic 

approach which can handle both linear and nonlinear problems. One of 

the drawbacks of this method is it’s increasing amount of computations 

in the first few iterations. This causes the algorithm to be stopped in 

the beginning of the implementation by a software like Maple. Here we 

have proposed a modification in successive approximation method to 

overcome this problem by using a projection operator in the iterative 

method. 

The paper is organized as follows: 

In Section 2, preliminary mathematics about successive approximation 

method and the best approximation solution in L2[0, 1] is presented. In 

Section 3, we present the modified successive approximation method. The 

convergence discussion is given in Section 4. Finally, in Section 5, some 

numerical examples are presented to confirm effectiveness and applica- 

bility of the approach. 
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{ } 

yi+1(s) := x(s) +  0 k(s, t)g(t, yi(t)) dt, i = 0, 1, · ··  . 

 

2. Mathematical Preliminary 

2.1 Successive approximation method 

Consider the Volterra-Hammerstein integral equation (1), where k, g, x 

are continuous functions. One of the ways to obtain some approximations 

to the exact solution is to use the following recurrence relation 

  
y0(s) := x(s), ∫ s

 

 

Here the function g satisfies the Lipschitz condition with respect to it’s 

second variable 
 

|g(s, t) − g(s, u)| ≤ γ|t − u|,s ∈ [0, 1], 

where γ is independent of s, t and u. The convergence of the generated 

sequence    yi  ∞i=0   and  whereby  existence  and  uniqueness  of  the  exact 

solution of (1) is guarantied by the Banach fixed point theorem [3]. 

We define the nonlinear operators, T : L2[0, 1] → L2[0, 1] and G : L2[0, 1] 

→ C[0, 1] as follows 

 
 

 
and 

 

s 

Ty(s) = x(s) +  
0 

k(s, t)y(t)dt, s ∈ [0, 1], (2) 

 

G(x)(t) = g(t, x(t)), t ∈ [0, 1]. (3) 

Eq. (1) and the above iteration method can be represented in the oper- 

ator form, respectively as 

y(s) = TG(y)(s), s ∈ [0, 1], (4) 

 

 
y0(s) := x(s), 

yi+1(s) := TG(yi)(s), i = 0, 1, · · · . 

 
(5) 

∫ 
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k=1 

u∈Pm 

k=1 

Σ 

u, v u t v t dt,  ǁuǁL2 u, u , 
, 

 

2.2 The best approximation in L2[0, 1] 

Let  the  sequence  {φi}∞
i=0  be a complete orthonormal  set of  functions  in 

L2[0, 1] in which φi is a polynomial of degree i, i = 0, 1, · ··  , and Pm, m 

≥ 1 denotes the space of polynomial functions of degree ≤ m. Let the 
inner product and norm of space L2[0, 1] be respectively 

( ) = 

∫ 1    

( )  ( ) = 
√

( )  for all 
 

 

 
2[0 1] 

For any x ∈ L2[0, 1], the approximate function xm = 
Σm    (x, φk)φk is 

called the best approximation for x in Pm which satisfies the following 

optimal condition 
 

ǁx − xmǁL2 =  inf  ǁx − uǁL2 . (6) 
 

The following theorem shows that by increasing the value of m, a better 

approximations for x can be obtained. 

Theorem  2.2.1. [8] Let  {φi}∞
i=0  be  a  complete  orthonormal  sequence  of 

functions  in  L2[0, 1].  For  any  x ∈ L2[0, 1],  the  sequence  {xi}∞
i=0  defined 

by  xm = 
Σm   (x, φk)φk converges uniformly to x. 

 

The map Pm from L2[0, 1] into Pm which is defined as Pmx = 
Σm    (x, φk)φk 

is an orthogonal projection operator. Hence, Theorem 2.2.1, results in 
 

ǁx − PmxǁL2 → 0 as m → ∞,  for all x ∈ L2[0, 1]. (7) 

The inner product of L2[0, 1] can be approximated by the following discrete 

inner product which is obtained by using the Gauss-Lobatto quadrature 
 

m 

(u, v)m = u(sj)v(sj)wj, (8) 
j=0 

 

where  wj  = 1 1 2 , j  =  0, · · · , m  and  the  set  {sj}m 
 

is the 

m(m+1) [Lm(sj )] 

shifted Legendre Gauss-Lobatto nodes in [0, 1]. 
j=0 

0 
u, v ∈ L 

. 

k=1 
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} 
dtk 

Σ 

Σ
≤

 

where ǁxǁHN =  (   k=0 ǁu ǁL2 ) 2 , and c1 is a positive constant inde- 

k=0 
m 
k=0 

 

According to [7], if x belongs to the Sobolev space HN (0, 1) = {u| d
k  

u ∈ 

L2[0, 1], 0 ≤ k ≤ N , the following error estimate between the continu- ous 
and discrete inner products holds 

|(x, φ) − (x, φ)m| ≤ c1m−N ǁxǁHN ǁφǁL2 , ∀ φ ∈ Pm, (9) 

ΣN (k)  2 1 

pendent of N , m,φ, x. Obviously, ǁxǁL2 ≤ ǁxǁHN  for all x ∈ HN (0, 1). 
We define the operator Qm from L2[0, 1] to Pm as 

m 

Qmx = (x, φk)mφk. (10) 
k=0 

With the aid of the assumptions of Theorem 2.2.1, and (9), for all x 

HN (0, 1) we obtain 

ǁPmx − QmxǁL2 = ǁ 
Σm     ((x, φk) − (x, φk)m)φkǁL2 

 
 ≤ c1(m + 1)m−N ǁxǁHN . 

Therefore for all x ∈ HN (0, 1) and m ≥ 1, 

ǁQmxǁL2 ≤ ǁPmx − QmxǁL2 + ǁPmxǁL2 

≤ c1(m + 1)m−N ǁxǁHN  + ǁPmǁǁxǁL2 

As ǁPmǁ = 1, we have 

ǁQmxǁL2 ≤ (c1(m + 1)m−N + 1)ǁxǁHN , 

and consequently 

ǁQmǁ ≤ qm := 1 + c1(m + 1)m−N , for all m ≥ 1. (12) 

It is easily seen that according to (11) and (7) 

ǁx − QmxǁL2 → 0 as m → ∞,  for all x ∈ HN (0, 1),N ≥ 2. (13) 

Furthermore, according to (12) 

qm → 1 as m → ∞. (14) 

x, φk | 

∈ 

|( ) − ( x, φk)m (11) 
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· · ·  ∈ − 

· · ·   

∫ s
step  1)  ẑ  (s) := x(s) +  k(s, 

t)z  (t)dt;n,m  n,m 
i=0 

0 

j+1 j+1 

 

In this paper, the complete orthonormal sequence is considered to be 
{φ }∞ ,  where  φ (t)  :=   L̃i(t) 

,  t  ∈ [0, 1],  and  L̃  (t)  =  L (2t − 1),   i  = 

i i=0 i ǁL̃iǁ i  i 

0, 1, 2,        , are shifted Legendre polynomials. The functions Li(t), i = 

0, 1, 2, , t  [ 1, 1], are the well-known Legendre polynomials which can 

be obtained recursively, as follows 

L0(t) := 1, L1(t) := t, 

Lj+1(t) :=  2j+1 tLj(t) −    j    Lj−1(t), j ≥ 1. 

3. Modified Successive Approximation Method 

Usually, the number of terms in iterative functions grows rapidly in each 

stage by increasing the number of iterations. Therefore the algorithm 

may be failed when it is executed by any software like Maple. Therefore 

we need to modify the method to prevent the growth of computations. In 

the following algorithm, we modify the successive approximation method 

slightly. In each step, after calculating the new iterative function we ap- 

proximate it by its best approximation in Pm and in this way we control 

the terms of the iterative functions. 

 
Algorithm 1. 

Let the functions k, g, x, number m and the precision ε be given and 

s ∈ [0, 1]. 
step 0) Set z0,m(s) := 0; 

for n = 1, · · ·  while ǁzn,m − zn−1,mǁL2 ≥ ε do 

0 
step  2)  rn,m(s) := g(s, ẑn,m(s)); 

step 3) zn+1,m(s) := 
Σm  (rn,m, φi)φi(s); 

 
end for, 
step 4) Set y 

n,m 
(s) := x(s) + 

∫ s 
k(s, t)zn+1,m(t)dt. 

According to the definition of operators T , G and Pm, Algorithm 1 can 

be represented as follows. 

Let the functions k, g, x, number m and the precision ε are given and 

s ∈ [0, 1]. 
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Set z0,m(s) := 0; 

for n = 1, · · ·  whileǁzn,m − zn−1,mǁL2 ≥ ε do 
zn+1,m(s) := PmGT (zn,m)(s); 

Set yn,m(s) := T (zn+1,m)(s). 

 
In fact, if the solution of the following equation exists then it can be 

approximated  using the  sequence  {zn,m}∞
n=0. 

zm = PmGT (zm),  m ≥ 1, zm ∈ Pm. (15) 

Remark 3.1. Kumar and Sloan [17] proposed a different collocation 

method based on a modification of the original problem. They used the 

collocation method to find the solution of the following modified equation 

instead of (4) 

z = GT (z). (16) 

To compare with (15), the collocation equation related to (16) was writ- 

ten as 

zn = PnGT (zn), 

where Pn is an interpolatory operator. 

In each iteration of the Algorithm 1, m inner products are performed 

which causes some computational drawbacks, hence we replace the con- 

tinuous inner product by the discrete inner product (8) which results in 

the following algorithm. 

Algorithm 2: Modified successive approximation 

Let functions k, g, x, number m and the precision ε be given and s 

[0, 1]. 

Set z0,m(s) := 0; 

for n = 1, · · ·  whileǁzn,m − zn−1,mǁL2 ≥ ε do 
zn+1,m(s) := QmGT (zn,m)(s); 

Set yn,m(s) := T (zn+1,m)(s). 

Indeed, under certain conditions, Algorithm 2, finds the fixed point of the 

following equation 

zm = QmGT (zm),   m ≥ 1   zm ∈ Pm. (17) 

∈ 
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∈ 

∂u 

0 
|k t, s | ds 

0 
|y1 s — y2 s | ds 

|k t, s | ds |y1 s — y2 s | ds. 

 

For  later  use,  we define the  sequence  {ym}∞
m=1  ⊂ L2[0, 1]  as 

ym = T (zm),  m ≥ 1. (18) 

 
4. Error Analysis 

Let the following assumptions be satisfied by functions x, k, g. 

H1:  x HN (0, 1). 

H2: The kernel function k(s, t) is in HN ((0, 1)2). 

H3: The function g(t, y) is in HN ((0, 1) × R). 

H4: γ := sup (s,u)∈([0,1]×R) 
∂g(s,u) < ∞. 

A straight result of the assumptions H3 and H4 is that the function g 

satisfies a Lipschitz condition in the second variable with the Lipschitz 
constant γ, 

|g(s, t) − g(s, u)| ≤ γ|t − u|, for all s ∈ [0, 1] and t, u ∈ R. 

Theorem 4.1. Let assumptions H1-H4 be satisfied. Then the operators 

G, GT, PmGT and QmGT, m ≥ 1 satisfy a Lipschitz condition. 

Proof. Let y1 and y2 be two arbitrary functions in HN (0, 1). Since the 

function g satisfies the Lipschitz condition, we have 

|G(y1)(t)−G(y2)(t)| = |g(t, y1(t))−g(t, y2(t))| ≤ γ|y1(t)−y2(t)|, for all t ∈ [0, 1]. 

This immediately implies that 

ǁG(y1) − G(y2)ǁL2 ≤ γǁy1 − y2ǁL2 . (19) 

To prove the Lipschitz condition for GT , from Schwartz inequality for 

t ∈ [0, 1] we have 

|Ty1(t) − Ty2(t)|2   ≤ 

 ∫ t 

 
 

2 

|k(t, s)(y1(s) − y2(s))|ds 

≤ 

∫ t 

( ) 2 

∫ t 

( ) 
( ) 2 (20) 

≤ 

∫ t 

( ) 2 

∫ 1 

( ) 
(  ) 2 

0 

0 0 
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(24) 

{ } 

0 0 

 

Taking the integral of both side of (20) over interval [0, 1], and using 

Schwartz inequality we obtain 

ǁTy1 − Ty2ǁL2 ≤ Kǁy1 − y2ǁL2 , (21) 

where  K2  =  
∫ 1 ∫ t 

|k(t, s)|2dsdt. Using (19) and (21), the Lipschitz 

continuity of the operator GT is inferred, 

ǁGT (y1) − GT (y2)ǁL2 ≤ γǁTy1 − Ty2ǁL2 ≤ Kγǁy1 − y2ǁL2 . (22) 

The linear operator Pm, m ≥ 1 is an orthogonal projection, hence 

ǁPmǁ = 1 and according to the relation (22), we conclude that 

ǁPmGT (y1) − PmGT (y2)ǁL2 ≤ ǁGT (y1) − GT (y2)ǁL2 ≤ Kγǁy1 − y2ǁL2 . 

 
Finally, the Lipschitz continuity for QmGT , m ≥ 1 follows from (22) 

and (12), 

 
ǁQmGT (y1) − QmGT (y2)ǁL2   ≤ qmǁGT (y1) − GT (y2)ǁL2   ≤ qmKγǁy1 − y2ǁL2 . 

 

The following theorems establish the convergence of the sequence gen- 

erated by the modified successive approximation method and (17). Q 

Theorem 4.2. Let assumptions H1-H4 be satisfied and 0 ≤ Kγ < 1, then 

the sequence zn,m generated by the modified successive approxi- mation 
method is convergent to the solution of equation (17) and con- sequently 

the sequence {yn,m} defined in the algorithm is convergent to ym and 

satisfies the following inequality 

(Kγ)n 

ǁyn,m − ymǁL2 ≤ K 
1 − Kγ 

ǁG(x)ǁL2 . (25) 

 
Proof. Since 0 ≤ Kγ < 1, according to (12) there is an M > 0 

sufficiently large so that 0 ≤ qmKγ < 1, m ≥ M , thus the operator 

(23) 
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{ } →  ∞  

(Kγ)n 

≤ ǁ 

≤ ǁ 

ǁ ǁ 

{ } 

 

QmGT is a contractive map on HN (0, 1) for m ≥ M . Then by Banach fixed 

point theorem [3] it has a unique fixed point zm on HN [0, 1] and the 

sequence {zn,m} generated by the algorithm is convergent to it. 

The convergence of    yn,m    to ym as n is obtained by using the 

following inequality 
 

ǁyn,m − ymǁL2 = ǁTzn,m − TzmǁL2 ≤ Kǁzn,m − zmǁL2 . (26) 

To prove the inequality (25), according to the Banach fixed point theo- 

rem [3] the sequence {zn,m} satisfies 

(Kγ)n 

ǁzn,m − zmǁL2 ≤ 
1 − Kγ 

ǁz0,m − z1,mǁL2 . 

Since z0,m(s) = 0 and T (z0,m)(s) = x(s), we have 

 

ǁzn,m − zmǁ ≤ 1−Kγ ǁz1,mǁL2 

(Kγ)n  Q 
1−Kγ m GT (z 0,m )ǁL2 

(Kγ)n  GT (z 
1−Kγ 0,m )ǁL2 

= (Kγ)
n  

G(x) 
1−Kγ L2 . 

 

Now by using (26), the inequality is obtained 

(Kγ)n 

ǁyn,m − ymǁL2 ≤ Kǁzn,m − zmǁL2 ≤ K 
1 − Kγ 

ǁG(x)ǁL2 . Q 

Theorem 4.3. Let assumptions H1-H4 be satisfied and 0 ≤ Kγ < 1, 

then    ym  ∞m=1   defined  by  (18)  is  convergent  to  y∗,  which  is  the  exact 
solution of (1). 

Proof. By defining z∗ := Gy∗, we get Tz∗ = TGy∗ = y∗, these lead to 

z∗ = GTz∗. By virtue of (21) and (24), we have 

ǁym − y∗ǁL2 = ǁT zm − T Gy∗ǁL2 = ǁT zm − T z∗ǁL2 ≤ Kǁzm − z∗ǁL2 , 
(27) 
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⎞ 

⎝
Σ 

⎠ 

∞ 

⎛ 

 

and for all m ≥ M 

ǁzm − z∗ǁL2  = ǁQmGT (zm) − z∗ǁL2 

= ǁQmGT (zm) − QmGT (z∗) + QmGT (z∗) − z∗ǁL2 

≤ ǁQmGT (zm) − QmGT (z∗)ǁL2 + ǁQm(z∗) − z∗ǁL2 

≤ qmKγǁzm − z∗ǁL2 + ǁQm(z∗) − z∗ǁL2 . 

 
By using (27) and (28) we have 

 
 
 
 

 
(28) 

ǁy − y∗ǁ ≤ Kǁz — z∗ǁ ≤
 K 

ǁQ z∗ − z∗ǁ , 
  

m L2 m L2 
1 − qmKγ L 

and the convergence is derived immediately from (13) and (14). Q 

 

5. Numerical Examples 

In all of the following examples, for various amounts of m, we compute 

the absolute errors in the following specified norms 
 

1 

N 2 

E2 = (yexact(xj) − yapp(xj))2 , 
j=1 

E = max 
j=1..N 

(|yexact(xj) − yapp(xj)|) . 

In Example 1, the convergence conditions of Theorem 4.2, are satisfied. 

However, in Example 2 and 3 although some of the conditions of the 

Theorem 4.2, are not established, but the results show the convergence 

of the method. This confirms that the conditions of Theorem 4.2, are 

sufficient and not necessary. 

Computations are carried out in Maple V. 15 software, with hardware 

configuration 32 bit intel Core 2 Duo CPU and 2 GB of RAM. 

Example 1. Consider the following nonlinear Volterra-Hammerstein 

integral equation of the second kind 

y(s) = x(s) − 
s 

s3 cos(t) cos(y(t))dt, 0 ≤ s ≤ 1, (29) 
0 

m 2 

∫ 
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— − − 

∫ 

0 |s cos(t)| dsdt) 2 = 0.08434 and γ := 1, so Kγ = 

y(s) = 
2 

− 
2 

e y(t) + y 

− 

 

where x(s) = s 6 cos(s) s3 cos(s) sin(s) 3s2 cos2(s) + 6 cos2(s) + 

6s cos(s) sin(s). The exact solution is y(s) = s. ∫ 1 ∫ t 3 2 1
 

 

 

 

0.08434 < 1 and according to the Theorem 4.2, the method is convergent. 
The results of the method are presented in Table 1. 

The results emphasize that when we increase the value of m the approx- 

imate solution can quickly converge to the exact solution. The absolute 

error of approximate solution for m = 15 is depicted in Figure 1. 

Example 2. Consider the nonlinear Volterra-Hammerstein integral 

equation of the second kind as follows: 

y(s) = 1 + sin2(s) − 3 
s 

sin(s t)y(t)2 
0 

dt, 0 ≤ s ≤ 1, (30) 

which has the exact solution y(s) = cos(s). 

The method has been applied for various values of m. The results are 

given in Table 2. 

The table shows the rapid decrease in the error by increasing m. To affirm 

the precision of our method, in Figure 2, the absolute error of the 

approximate solution corresponding to m = 15 is plotted. In Table 3 we 

have represented the error of approximations for m = 20, which are 

obtained by our approach and Radial basis function method (RBF) 

[22] and Single-term Walsh series method (STWS) [23]. 

Example 3. Consider the following nonlinear Volterra-Hammerstein 

integral equation of the second kind given in [20]: 

3 1 −2s 
∫ s

 2 
 

 

which has the exact solution y(s) = e−s. 
The method has been implemented and the results have been summa- 

rized in Table 4. Looking at the table,  it can be seen that the abso- 

lute error is rapidly reduced by increasing m. For comparison with the 

other methods in Table 5, the absolute errors of present method and the 

other methods are given. It shows the effectiveness and accuracy of our 

method in comparison with the other methods. The absolute error of 

approximate solution for m = 15 is depicted in Figure 3. 

0 

0 

Here K := ( 

− (t) dt, 0 ≤ s ≤ 1, (31) 
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& 24)I+I(&9I43 I3 8:((*88I;* &5574=I2&9I43 ... 83 

 

 
 

+iJXUH 2! 9KH DEVROXWH HUURU  EHWZHHQ  DSSUR[iPDWH VROXWiRQ  DQG  WKH 

H[DFW  VROXWiRQ  ZiWK  > # 15 iQ  *[DPSOH 2. 
 
 

 
 

+iJXUH 3! 9KH DEVROXWH HUURU  EHWZHHQ  DSSUR[iPDWH VROXWiRQ  DQG  WKH 

H[DFW  VROXWiRQ  ZiWK  > # 15 iQ  *[DPSOH 3. 
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6. Conclusion 

In this study, we have proposed a modification to successive approxima- 

tion method by using the projection of the iteration functions in each 

stage. The applicability of the method is shown with the implementation 

of the method in some examples. By comparison of the numerical results 

of the present method with the exact solution and some other methods, 

the performance and superiority of the method have been confirmed. The 

convergence analysis of the method has also been discussed. 

 
 

References 
 

[1] G. Adomian, Analytic solution of nonlinear integral equations of ham- 
merstein type, Appl. Math. Lett., 11 (1998), 127-130. 

[2] K. Atkinson and J. Flores, A discrete collocation method for nonlinear 
integral equations, IMA j. Num. Anal., 13 (1993), 195-213. 

[3] K. Atkinson and W. Han,  Theoretical  Numerical  Analysis,  a  Func- tional 
Analysis Frameworks, Third edition, Texts in applied mathematics, 
Springer, (2009). 

[4] S. M. Berman and A. L. Stewart, A nonlinear integral equation for visual 
impedance, Biol. Cybernetics. 33 (1979), 137-141. 

[5] A. M. Bica, M. Curila, and S. Curila, About a numerical method of 
successive interpolations for functional Hammerstein integral equations, 
J. Comput. Appl. Math., 236 (2012), 2005-2024. 

[6] H. Brunner, On implicitly linear and iterated collocation methods for 
Hammerstein integral equations, J. Integral. Equa. Appl., 3 (1991), 475- 
488. 

[7] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Meth- 
ods: Fundamentals in Single Domains, Springer, Berlin, 2006. 

[8] L. M. Delves and J. L. Mohamed,Computational methods for integral equa- 
tions, Cambridge university press, (1988). 

[9] G. N. Elnagar and M. Razzaghi, A pseudospectral method for Hammer- 
stein equations, J. Math. Anal. Appl., 199 (1996), 579-591. 



 

 

 

 

Review of International Geographical Education                              ©RIGEO, Volume 10 (3) Sep 2020 
 

 

− 

− 
− 

− 
− 

 

A MODIFICATION IN SUCCESSIVE APPROXIMATION ... 85 

 
[10] G. N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlin- 

ear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 
(1996), 147-158. 

[11] F. Ghoreishi and M. Hadizadeh, Numerical computation of the Tau ap- 
proximation for the Volterra-Hammerstein integral equations, Numer. Al- 
gor., 52 (2009), 541-559. 

[12] I. G. Graham, S. Joe, and I. H. Sloan, Iterated Galerkin versus iterated 
collocation for integral equations of the second kind, IMA j. Num. Anal., 
5 (1985), 355-369. 

[13] C. H. Hsiao, Hybrid function method for solving Fredholm and Volterra 
integral equations of the second kind, J. Comput. Appl. Math., 230 (2009), 
59-68. 

[14] H. Kaneko and Y. Xu, Degenerate kernel method for Hammerstein equa- 
tions, Math. Comput., 56 (1991), 141-148. 

[15] H. Kaneko, P. Padilla, and Y. Xu, Superconvergence of the iterated 
degenerate kernel method, Appl. Anal., 80 (2001), 331-351. 

[16] A. Karoui and A. Jawahdou, Existence and approximate Lp and contin- 
uous solutions of nonlinear integral equations of the Hammerstein and 
Volterra types, Appl. Math. Comput., 216 (2010), 2077-2091. 

[17] S. Kumar and I. H. Sloan, A new collocation-type method for Hammer- 
stein integral equations, Math. Comp., 48 (1987), 123-199. 

[18] L. J. Lardy, A variation of Nystroms method for Hammerstein integral 
equations, J. Integ. Equ., 3 (1982), 123-129. 

[19] K. Maleknejad, H. Almasieh, and M. Roodaki, Triangular functions (TF) 
method for the solution of nonlinear Volterra Fredholm integral equa- 
tions. Commun. Nonlinear Sci. Numer. Simula., 15 (2010), 3293-3298. 

[20] K. Maleknejad, E. Hashemizadeh, and B. Basirat, Computational method 
based on Bernstein operational matrices for nonlinear Volterra Fredholm 
Hammerstein integral equations, Commun. Nonlinear Sci. Numer. Sim- 

ula., 17 (2012), 52-61. 

[21] Y. Ordokhani and M. Razzaghi, Solution of nonlinear Volterra Fredholm 
Hammerstein integral equations via a collocation method and rational- 

ized Haar functions, Appl. Math. Lett., 21 (2008), 4-9. 



 

 

 

 

Review of International Geographical Education                              ©RIGEO, Volume 10 (3) Sep 2020 
 

 

 

[22] K. Parand and J. A. Rad, Numerical solution of nonlinear Volterra Fred 
Holm Hammerstein integral equations via collocation method based on 
radial basis functions, Appl. Math. Comput., 218 (2012), 5292-5309. 

[23] B. Sepehrian and M. Razzaghi, Solution of nonlinear Volterra-Hammer- stein 
integral equations via single-term walsh series method, Mathl. Probl. Eng., 
5 (2005), 547-554. 

[24] I. H. Sloan, The galerkin method for integral equations of the second kind, 
IMA J. Num. Anal., 4 (1984), 9-17.  


