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1. Introduction 

Length-biased exponential (LBE) or moment exponential (ME) distribution is considered as one of the 
most important univariate and parametric models. It is commonly utilized in the analysis of data 
collected throughout a lifespan and in problems connected to the modeling of failure processes. There 
is much to be said for a flexible lifespan distribution model, and this one may be a suitable fit for some 
sets of failure data. Reference [1] proposed the LBE with the following PDF and distribution function 
(CDF): 

 g(x; α)  α2xe− αx; x ≥ 0, α > 0, (1) 

 G(x; α)  1 − (1 + αx)e− αx; x ≥ 0, α > 0, (2) 

where α is the scale parameter. Different values of the shape parameter lead to different shapes of 
density function. 

Many authors extended new models from the LBE distribution such as exponentiated ME [2], 
generalized exponentiated ME [3], and Marshall–Olkin (MO) LBE (MOLBE) distributions [4]. MO 
Kumaraswamy ME model was discussed in [5]. 

Several univariate continuous distributions have been extensively used in environmental, 
engineering, financial, and biomedical sciences, among other areas for modeling lifetime data. However, 
there is still a strong need for a significant improvement of the classical through different techniques 
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for modeling several data lifetime. In this regard, the inverted (or inverse) (I) distribution is one 
procedure that explores extra properties of the phenomenon which cannot be produced from 
noninverted distributions. Applications of inverted distributions include econometrics as well as the 
engineering sciences as well as biology and survey sampling as well as medical research among others. 
In the literature, several studies related to inverted distributions have been handled by several 
researchers; for instance, Reference [6] introduced the I Weibull distribution. Reference [7] studied the 
I Pareto type 1 distribution. Reference [8] investigated the I Pareto type 2 distribution. Reference [9] 
handled exponentiated I Weibull distribution. Reference [10] provided the I Lindley distribution. 
Reference [11] suggested the I Kumaraswamy model. Reference [12] presented the I Nadarajah-
Haghighi model. 
Reference [13] studied the I power Lomax model. Reference [14] suggested I exponentiated Lomax 
model. Reference [15] discussed the Weibull I Lomax model. Reference [16] suggested the power 
transmuted I Rayleigh model. Reference [17] investigated the I Topp–Leone distribution, and half logistic 
I Topp–Leone distribution was studied in [18]. 

Our motivation here is (i) introducing a new distribution, referred to as the inverted length-biased 
exponential (ILBE), (ii) studying some of the main properties, (iii) providing point and interval estimators 
for the model parameter from complete and censored samples, and (iv) examining its applicability using 
three real datasets. 

The inverted LBE (ILBE) distribution is constructed by using the random variable T 1/X where X 
follows (2). The 

ILBE distribution’s CDF is described as α 

3 

t 

The survival function (SRF) and HZRF of 
the ILBE distribution are provided by 

  α − α/t 

 F(t; α)  1 − 􏼒1 + 􏼒e , 

t 

2 − α/t (5) α e h(t; α)  3 − α/t . t 􏼒1 − (1 + α/t)e 􏼒 

Figure 1 depicts PDF and HZRF plots for the ILBE distribution. According to Figure 1, the density of 
the suggested distribution is highly flexible in nature and can take on a number of forms, including 

 F(t; α) 􏼒1 + 􏼒e− α/t; t ≥ 0, α > 0. 

t 

The ILBE distribution’s PDF is specified as 

(3) 

α2 f(t; α)  e− 

α/t; t ≥ 0, α > 0. (4) 
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positively skewed and unimodal. Through the parameter space, the HZRF can take on many forms, such 
as decreasing, rising, or upside down. 

This paper is organized as follows. In Section 2, the basic characteristics of the ILBE distribution are 
obtained. The MLL estimators for the ILBE model are described in Section 3 and are established on 
complete and censored samples, accompanied by a simulation analysis. The application to actual data 
collection is covered in Section 4. Section 5 concludes the paper with some remarks. 

2. Fundamental Mathematical Properties of ILBE Distribution 

Here, we give some essential properties of the ILBE distribution, like QuF, MOs, PRWMOs, incomplete 
MOs, and inverse MOs. 
2.1. Quantile Function. A generated random number from the ILBE distribution is obtained by solving 
the following equation numerically: 

α 

 Q(u)  − 1 − W− 1􏼒− e− 1u􏼒, 0 < u < 1, (6) 

where W− 1 denotes the negative branch of the Lambert W function (i.e., the solution of the equation 
W(Z)eW(Z)  z. The median, say Q2, is achieved by adjusting u  0.5 in (6), and the first quartile and third 
quartile, denoted by Q1 and Q3, are obtained by setting u  0.25 and 0.75, respectively, in (6). Note that 
equation (6) is solved numerically by using Mathematica 9. 

α 

 Q1  − 1 , 

− 1 − W− 1􏼒− 0.25e 􏼒 

α 

 
 Q2  − 1 − W− 1􏼒− 0.5e− 1􏼒, (7) 

α 

 Q3  − 1 . 

− 1 − W− 1􏼒− 0.75e 􏼒 

2.2. Moments. Due to its relevance in any statistical study, we shall give the n-th MO of the ILBE 
distribution here. For the ILBE model, the n-th MO of T about the origin is computed as follows: 
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 μn′  E T􏼒n  􏼒∞ tn α 32e− α/tdt  αnΓ(2 − n), n < 2. (8) 

 0 t 

The following formula may be used to determine the MOGF of the ILBE distribution: 

ϖs(t)  α 􏼒 t e dt  α Γ􏼒2 − 

n, 􏼒, n < 2, 11 t t where Γ(., 

t) is the lower IN gamma function. 

For the ILBE distribution, the n-th 
inverse MO is calculated on the basis: 
∞ 

 τk(x)  α2 􏼒 t− n− 3e− α/tdt  α− kΓ(n + 2). (12) 
0 

For n  1, we get the harmonic mean of 
the ILBE distribution. 

The Lorenz and Bonferroni curves are obtained as follows 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1

 2 3 4 t t 
α = 0.9α = 1.8α = 0.9α = 1.8 α = 1.2α = 2.0α = 1.2α = 2.0 α = 1.5α = 2.5α 

= 1.5α = 2.5 

Figure 1: Plots of PDF and HZRF for the ILBE distribution. 

LF(t)  1  c􏼒1, 
α

􏼒, ς (t) 

 E(T) t 

 LF(t) c(1, (α/t)) 

(13) 

BF(t)  F(t)  (1 +(α/t))e− α/t. (14) 

2.3. Order Statistics. Let T1, T2, ... , Tn be r samples from the ILBE model with order statistics T(1), T(2), ... , T(n). The PDF of T(k) of 

order statistics is given by 

n! k− 1 n− k fT(k)(t)  F (t)f(t)(1 − F(t)) . 

(k − 1)!(n − k)! 

(15) 

The PDF of T(k) can be expressed as 

Mx(t)  􏼒 μn′  􏼒 αnΓ(2 − n), n < 2. n! n! n0
 n0 

The incomplete (IN) MO, say ςn(x), is 

(9) 

 ςn(t)  α2t 􏼒 0tn− 3e− α/tdt  αnc􏼒2 − n, α 􏼒, n < 2, 

t 

where, c(., t) is the upper IN gamma function. 

Further, the conditional MO, say ϖs(x), is 

(10) 
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 n!α2 − 3 α k− 1 

fT(k)(t)  t 􏼒1 + 􏼒 

 (k − 1)!(n − k)! t 

(16) 

 α − α/t n− k 
− kα/t 

 e 􏼒1 − 􏼒1 + 􏼒e 􏼒 . 

t 

Particularly, PDF of the first and largest order statistics can be calculated as 

 fT(1)(t)  nα2t− 3e− α/
t􏼒1 − 􏼒1 + αt e− α/t 

n− 1, (17) 

 􏼒 􏼒 

 fT(n)(t)  nα2t− 3􏼒1 + α 􏼒n− 1e− nα/t, (18) 

t 

respectively. 
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2.4. Mean Residual Life Function. It has an important application of the MOs of residual lifetime function. The MRLS of ILBE 
distribution is 

∞ 

1 υ(t)  E(T − t|T > t)   􏼒 xf(x)dt − t 

F(t)  

t 

 α α − α/t − 1 

 αΓ􏼒1, 􏼒􏼒1 − 􏼒1 + 􏼒e 􏼒 − t. t

 t 

(19) 

The MINTrepresents the amount of time that has passed after an item has failed, assuming that this failure has occurred. 
The MINT of ILBE distribution is 

t 

ϖ(t)  E(T − t|T ≤ t) dx 

F (20) 

 α α − 1 
α/t 

 t − αc􏼒1, 􏼒􏼒1 + 􏼒 e . t t 

2.5.ProbabilityWeightedMoments. The PRWMOs are often used to investigate additional aspects of the probability 
distribution. The PRWMOs of the random variable T, denoted by Sr,p, are defined as 

∞ 

 Sr,p  􏼒 trf(t)[F(t)]pdt, (21) 
− ∞ 

where r and p are positive integers. Substituting (3) and (4) into (21) yields the PRWMOs of the ILBE distribution as follows: 
Table 1: MLE, ℘, I, [, H, and ℶ of the ILBE distribution for α  1.2 under TIIC. 

n tr (%) MLE ℘ I 
[ 

90% 

H ℶ [ 

95% 

H ℶ 

100 
60 
80 

1.6091 
1.3548 

0.4091 
0.1548 

0.2111 
0.0546 

1.3068 
1.0803 

1.9113 
1.6294 

0.6045 
0.5490 

1.2489 
1.0278 

1.9692 
1.6819 

0.7203 
0.6542 

 100 1.2316 0.0316 0.0263 0.9700 1.4931 0.5231 0.9199 1.5432 0.6233 

200 
60 
80 

1.5648 
1.3195 

0.3648 
0.1195 

0.1575 
0.0319 

1.3372 
1.1125 

1.7924 
1.5266 

0.4552 
0.4142 

1.2937 
1.0728 

1.8360 
1.5663 

0.5424 
0.4935 

 100 1.1993 0.0007 0.0146 1.0020 1.3965 0.3946 0.9642 1.4343 0.4701 
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  α p − (p+1)α/t 

S
r,p  α 􏼒 t 􏼒1 + 􏼒 e 0 t p ∞ (22) p 

 􏼒⎜⎛⎜⎝ ⎟⎞⎟
⎠

αj+2 􏼒 tr− 3− je− (p+1)α/tdt. 

 j0 j 0 

As a result of the simplification, the PRWMOs of the ILBE distribution assume the following structure: 

p ⎝⎛ 
p 

⎠⎞αrΓ(j − rj+− r2+2). (23) Sr,p  􏼒 

 j0 j (p + 1) 

3. Statistical Inference 

3.1. MLL Estimator Based on TIIC. Assume 

T(1), T(2), ... , T(n) are the recorded TIICS of size r, whose lifetimes have the ILBE distribution with PDF (4), and the experiment 
is completed once the r-th object fails for just some fixed values of r. The log-likelihood function (LLF), according to TIIC, is 
provided by 

300 
60 
80 

1.5777 
1.3307 

0.3777 
0.1307 

0.1551 
0.0256 

1.4154 
1.1831 

1.7399 
1.4784 

0.3245 
0.2953 

1.3844 
1.1548 

1.7710 
1.5067 

0.3866 
0.3519 

 100 1.2097 0.0097 0.0071 1.0690 1.3504 0.2814 1.0420 1.3773 0.3353 

  

Table 2: MLE, ℘, I, [ , H, and ℶ o f the ILBE di stribution for α  1.5 und er TIIC. 

  

n tr (%) MLE ℘ I 
[ 

90% 

H ℶ [ 

95% 

H ℶ 

100 
60 
80 

1.9815 
1.6720 

0.4815 
0.1720 

0.2846 
0.0666 

1.6091 
1.3332 

2.3538 
2.0107 

0.7447 
0.6775 

1.5378 
1.2683 

2.4251 
2.0756 

0.8873 
0.8073 

 100 1.5196 0.0196 0.0313 1.1969 1.8423 0.6454 1.1351 1.9041 0.7690 

200 
60 
80 

1.9785 
1.6695 

0.4785 
0.1695 

0.2638 
0.0544 

1.6907 
1.4075 

2.2664 
1.9315 

0.5757 
0.5240 

1.6356 
1.3573 

2.3215 
1.9817 

0.6859 
0.6243 

 100 1.5170 0.0170 0.0215 1.2674 1.7665 0.4991 1.2196 1.8143 0.5946 

300 
60 
80 

1.9562 
1.6486 

0.4562 
0.1486 

0.2273 
0.0359 

1.7550 
1.4656 

2.1573 
1.8315 

0.4023 
0.3659 

1.7165 
1.4306 

2.1958 
1.8666 

0.4793 
0.4359 

 100 1.4988 0.0012 0.0114 1.3245 1.6731 0.3487 1.2911 1.7065 0.4154 
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 r r 
α 

ln l2  ln C + 2r ln α − 3 􏼒 ln ti − 􏼒 t i 

 i1 i1 

α 

+(n − r)ln 1􏼒 − 􏼒1 + 􏼒e− α/tr􏼒, 

(24) 

tr 

and for the sake of simplification, we abbreviate ti rather than t(i). As a result, the partial derivatives of the LLF with regard to 
the component of the score U(α)  z ln l2/zα may be computed as follows: 

 2r r 1 (n − r)αe− α/tr 

 U(α)  α − 􏼒i1 ti + t2r􏼒1 − 􏼒􏼒􏼒1 + α/tr e− α/tr􏼒􏼒. (25) 

The model parameters’ MLL estimator is produced by numerically solving equation (18) after assigning it to zero. In the 
case of a complete sample, we acquire the MLL estimators of the model parameters for r n. 

3.2. Simulation Results. A simulation is used to evaluate the estimators’ behavior considering a set of parameter choices. 
Mean square error (℘), bias (I), lower limit ([) of the COIs, upper bound (H) of the COIs, and average length (ℶ) of 90% and 
95% are among the metrics computed. All numerical calculations are made using the R programming (R 4.1.1). The following 
algorithm are used: 

(i) On aggregate, the ILBE distribution produces 1000 random samples with sizes of n  100, 200, and 300. (ii) Values for 
a few parameters are α  1.2 and α  1.5. 

(iii) There are three degrees of censorship: r 60%, 80% (TIIC), and 100% (complete sample). 

(iv) ℘, I, [, H, and ℶ of estimates are computed. 

Tables 1 and 2 include the numerical findings for the complete and TIIC measurements, respectively. 
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ILBETIITOLIREmpiricalTIITOLIR 
HLOIRTRIRILBETRIR 

HLOIR 

Figure 2: Fitted PDFs and CDFs of comparison models for the first dataset. 
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HLOIR 

Figure 3: Fitted PDFs and CDFs of comparison models for the second dataset. 
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 From these tables, we conclude the following: the ILBE model with known distributions such as the 

HLOIR [19], TIITOLIR [20], and TRIR [21] distributions, 

(i) As the sample size grows, ℘, I, and ℶ of all estithe ILBE model performs better. The PDFs of competitive mates 
decrease. models are (ii) ℘, I, and ℶ of all estimates decrease as r decreases. 

(iii) ℶ of the COIs increases as the confidence levels 4λα2t− 3exp􏼒− (α/t)2􏼒􏼒1 − exp􏼒− (α/t)2􏼒􏼒λ− 1 increase from 90% to 95%. 

fHLOIR(t)  2 λ 2 , 

􏼒1 +􏼒1 − exp􏼒− (α/t) 􏼒􏼒 􏼒 

4. Applications to Real Data 2 − 3 2 2 θ− 1 
 fTIITOLIR(t)  4θα t exp􏼒− 2(α/t) 􏼒􏼒1 − exp􏼒− 2(α/t) 􏼒􏼒 , 

In this part, we demonstrate the ILBE model’s adaptability (26) by examining three real-world datasets. Comparing the fit of 

5e-04 
0 1000 2000 3000 4000 5000 1000 2000 3000 4000 y y 

ILBETIITOLIREmpiricalTIITOLIR 
HLOIRTRIRILBETRIR 

HLOIR 

Figure 4: Fitted PDFs and CDFs of comparison models for the third dataset. 

Table 3: Numerical results of MLE, SE, ∧1, ∧2, ∧3, ∧4, and ∧5 for the first dataset. 

(α) 
(α, λ) 

(α, λ) 
(α, λ)  
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Table 4: Numerical results of MLE, SE, ∧1, ∧2, ∧3, ∧4, and ∧5 for the second dataset. 

 

Model MLEs and SE ∧1 ∧2 ∧4 ∧5 ∧3 

ILBE (α) 10.696 (0.7563)  664.794 666.794 666.794 667.848 666.834 

HLIR (α, λ) 2.404 (0.226) 0.589 (0.06) 680.806 684.806 684.806 686.915 684.93 

TIITLIR (α, 

λ) 
1.824 (0.162) 0.43 (0.051) 700.214 704.214 704.214 706.323 704.338 

TIR (α, λ) 9.978 (1.136) − 0.812 (0.085) 720.665 724.665 724.665 726.774 724.706 

 

Table 5: Numerical 
results of MLE, SE, 

∧ 
1, ∧2, ∧3, ∧4, 

a nd ∧5 for the third dataset. 

  

Model MLEs and S.E ∧1 ∧2 ∧4 ∧5 ∧3 

ILBE (α) 4326 (540.7191)  567.141 569.141 568.647 569.627 569.275 

HLIR (α, λ) 1237 (184.326) 0.866 (0.172) 575.242 579.242 578.252 580.214 579.656 

TIITLIR (α, 

λ) 
0.069 (0.041) 0.049 (0.0091) 716.204 720.204 719.214 721.176 720.618 

TIR (α, λ) 1821000 (346600) − 0.859 (0.126) 575.303 579.303 578.313 580.275 579.717 

fTRIR(t)  2θ
t− 3 exp􏼒

− θ
2􏼒􏼒1 + λ − 2λ exp􏼒

− θ
2􏼒􏼒. t t 

(27) 

In order to make a comparison between various models, some information criteria (INC) like maximized likelihood (?1), 

Akaike INC (?2), consistent Akaike INC (?3), Bayesian INC (?4), and Hannan–Quinn INC (?5) are used. According to the given 

data, the optimal model is one with the lowest value of ?1, ?2, ?3, ?4, and ?5. 

The first dataset [22]: it describes 72 guinea pigs infected with highly pathogenic tubercle bacilli and their survival 
periods (in days). 

The second dataset: acquired and documented in [23], the dataset comprises the waiting times (in minutes) of 100 
bank clients. 

The third dataset [24]: it offers 32 observations on the failure time for vertical boring machines. 

Figures 2–4 indicate the fitted PDFs, fitted CDFs of the ILBE distribution, and those of the comparison models (HLOIR, 
TIITOLIR, and TRIR) for the three datasets. 

It can be observed from Figures 2–4 that the ILBE distribution exhibits good matches, attesting its applicability for the 
three datasets. 

Tables 3–5 show the ML estimates (MLEs) and standard errors (SEs) for the ILBE model when compared to various known 
distributions such like HLOIR, TIITOLIR, and TRIR. They also include the relevant measures of fit statistic. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Review of International Geographical Education                              ©RIGEO, Volume 10 (1) March 2020 

 

 

13 
 

Furthermore, Tables 3–5 show that the ILBE distribution is the best match among the other models for the three datasets, 
since the ILBE distribution has the lowest values of the suggested metrics. 

5. Conclusions 

This paper developed a new one-parameter lifetime distribution, named as inverse length-biased exponential distribution. 
The new model is quite flexible in nature and can acquire a variety of shapes of density and hazard rate functions. MOs, 
PRWMOs, inverse MOs, incomplete MOs, MRLS, and MINT are all explored as key characteristics of the new distribution. In 
both complete and censored samples, the maximum likelihood methodology is developed to calculate the parameters of 
the new distribution. To investigate the conduct of estimations, a simulation analysis is discussed. Three real-world examples 
show that the inverse length exponential distribution gives a pretty good fit and may be used as a competitive model to fit 
real-world data. It is hoped that this distribution would be helpful to scholars in a variety of disciplines. In the future, we 
plan to use the new proposed model to study the statistical inference of it under different censored schemes, using various 
methods of estimation to assess the performance of its parameters. Also, researchers can extend and generalized it because 
this model is very simple and has more flexibility to fitting more datasets. 
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