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1. Introduction

Coding theory aims to provide optimal codes for detecting and correcting a maximum number of errors during data
transmission through noisy channels. Cyclic codes have been in focus due to their rich algebraic structure which
enables easy encoding and decoding of data through the process of channel coding. Cyclic codes over rings have
gained a lot of importance after the remarkable break- through given by Hammons et al. in reference [1]. A vast
literature is available on the structure of cyclic codes overfields, integer residue rings, Galois rings, finite chain rings, and
some finite nonchain rings [2-29]. Cyclic codes overfinite chain rings with length coprime to the characteristic ofresidue
field have been investigated in references [2, 16, 22].1slam and Prakash have established a unique set of gener-ators for
cyclic codes over Zxin reference [4] and for cycliccodes over £, uF, u?*  0in reference [5]. A. Sharma and

T. Sidana have studied cyclic codes of p* length over finite

chain rings in reference [15], thereby extending the results ofKiah et al. on cyclic codes over Galois rings [14]. Dinh explored
the structure and properties of cyclic codes oflength p* over finite chain rings with nilpotency index 2 [13].However, in most
of the studies, there have been some limitations on either the length of code or the nilpotency index of the ring. We do not
impose any such restriction in this paper. Salagean made use of the existence of a Grobnerbasis for an ideal of a polynomial
ring to establish a unique set of generators for a cyclic code over a finite chain ring with arbitrary parameters [18]. Al-Ashker et
al. have also workedin the same direction in the paper [28] by extending the novel approach given by Siap and Abualrub [12]
which pullsbaek the gererators of a cyclic code over Z; to establish the structure of cyclic codes over the ring 2z, uz,

uk- 1 + 4ot
Zi1, u* 0. They have also extended this approach over thefinite chagn ring F, wF, u*'F,;, u* 0 [24].
Monika and Sehmi have given a constructive approach + oot

to establish a generating set for a cyclic code over a finite chain ring by making use of minimal degree polynomials of
certain subsets of the code [20]. We make some advance- ments to this study by establishing a unique set of generatorsfor a
cyclic code over a finite chain ring with arbitrary parameters. It is noted that this unique set of generators retains all the
properties of generators obtained in reference [20].

The paper is organised as follows: In Section 2, we statesome preliminary results. In Section 3, we establish a uniqueset
of generators for a cyclic code over a finite chain ring. InSection 4, we establish a minimal spanning set and rank of the
cyclic code. We give sufficient as well as necessary conditions for a cyclic code to be an MDS code. We establish sufficient as
well as necessary conditions for a cyclic code oflength which is not coprime to the characteristic of residue field of the ring
to be an MHDR code. Finally, we providea few examples of MDS and MHDR cyclic codes over somefinite chain rings.

189


mailto:drnprabhudeva@gmail.com
mailto:jayashreedn12@gmail.com
mailto:girishhspt@gmail.com

Review of International Geographical Education ©RIGEO, Volume 8 (1) March 2018

2. Preliminaries

Let R be a finite commutative chain ring. Let ¢ b¢ the unique maximal ideal of R and ] be the nilpotency index of c.Let F, R/
c be the residue field of R, where g p° fora prime p and a positive integer s.
Thegfolldwing is a well-known result (for refere@ce, see

[15]).

Proposition 1. Let R be a finite commutative chain ring.Then, we have the following:
3. Unique Set of Generators

In this section, a unique set of generators for a cyclic code Cof arbitrary length n over R has been established. For this, letus
first recall the construction given by Monika et al. to obtain a generating set for a cyclic code C over a finite chainring R

[20]. Let £ (2), f1(2), - - ., S m(2) be minimal degree

polynomials of certain subsets of C such that deg(f;(2)) ¢

t; < n and the leading coefficient of £;(z) is equal to c”u;, where u;is some unit in R, t; < t;.q, i;> i;q, and J;is the
smallest of such power. If jo 0, then fo(z) is a monic

(i) charrR @ p°, where 1<a<] and |R| @ |Fq|]

o]
polynomial and we have m € 0.

(ii) There exists an element ¢ € R with multiplicative order p*-1. The set T 0,1, 53 ..., G’s' 2 is called the Teichméller

set of R
(iii) Every re R can be uniquely expressed as
rro+riC+-+r.c 1 where r, €T for ¥

0<i<]- 1 Also, risaunitin R if and only if r #0

Lemma 3 (see [20]). Let Cbe a cyclic code having a length nover R and f;z(, § <j < m, be polynomials as defined above.
Then, we have the following:

(i) Cis generated by the set £5(2);790,1...,m
(i) For O0<jsm, f(2) € Cih (2), where h (2) is

+aLoUy(2) + 012Uy (2) + -+ + ane - ¢ - 1227 0 Uy (2) -

+00,0Up(2) + 0012Ug(2) + + -+ + o0t -t - 12t luo(z).

This implies that z™ = tu,,(2) ¢ am(2) U, (2) + om-1 (2)Up. 1(2) ++++ + a0 (2)Uy (2), Where am (2) @ omo + am1 z + -
“Homnrt-22" 2 and  ai(2) @ aio + oz + e+
independent, and hence, it is a minimal spanning set for C. Itfollows that rank C ( ) € n- to.
The following theorem determines all the MDS cyclic
Q¢
i+l
~t-12m” 6" Lfor0<ism - 1. Clearly, deg(am(2)) <n -
codes of arbitrary length over a finite chain ring R. m|
2 and deg(ai(2))<t; 4 - 1 forall i, 0<i<m 1. Then, bymultiplying equation (18) by c!- /=1, we get

4. MDS and MHDR Cyclic Codes over a FiniteChain Ring

In this section, the minimal spanning set and rank of a cycliccode C over a finite chain ring R have been established. Sufficient
as well as necessary conditions for a cyclic code tobe an MDS code and for a cyclic code to be an MHDR code have been
obtained. Finally, to support our results, some examples of optimal cyclic codes have been presented.

Theorem 1. Let C be a cyclic code having an arbitrary length n over a finite chain ring R. Then, rank(C) € n - to,

this by induction on j. First, we prove thatz'"fougy(z) €spanS'. Clearly, 21~ %ugy(z) is a polynomial ofdegree
t, in C. Then, we have z1~ fug(z) - ¢~ 1uy(2) @
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go(2)Ug(z) for some gy(z) € R[z] with a degree less than

t - & which implies thatzi~ foug(z) - ¢~ tuy(z) espanS. Therefore, we have z:~ b
Up(z) € span S. We suppose that z%2~ “uy(z), 2% %2uUy(2),...,2% Y 'u;1(2) € span S’ for 1<j<m- 1 Now, we
will show that z%1~ Yu,(z) € span S. Clearly, 2%t~ %u,(2) is a polynomial of degree t;; in C. Then, we have ZU U

u;(z) - clr im U1 (2) € (Uo(2), Ui (2), ..., ui(2)) and zb+” tfuj(z) ¢ ¢ im U (2) + mo(2)Up(2)+ muy(2) + -+ +
mu;(z), where m(z) € R[z] and deg(m,(2)) <t - t; for all i, 0<i<j. This implies that
where tp is the degree of minimal degree polynomial in C.

m;U;(z) € span S for 0<i<j, which further implies that
275U (z) € spanS. Therefore, we have 2z~ fu (2)

Proof. Let C be a cyclic code having an arbitrary lengthn
2t U (2) 9 amoUy, (2) + 0m 12U (2) + 2+ ampn- ¢ - 22™ ™ “U,(2)

m

+ 0m- 1,0Up. 1(2) + Om- 112U 1(2) + -
t O 1t,- t

tmr- 1
T U1 (2) +

- 1zt’"_
(18)

+0o1,0U1(2) + 01,1204 (2) + - -+ + age 5 e - 127 K lul(z)

+ 000Uo(2) + a012Ug(2) + - -+ + a0r - ¢ - 1207 7 Ug(2).

This implies that z™ = 1u,,(2)  om(2) Uy (2) + am-1 (2)Up. 1(2) + -+ + a0 (2)U (2), Where am (2) @ omo + om1 z +
“Hamnt 22" 2 and  ai(2) @ ajo + @iz + e+

independent, and hence, it is a minimal spanning set for C. Itfollows that rank ¢ ()en- to.
The following theorem determines all the MDS cyclic
e
2and deg & £ )¥t;, -1foralli O<ism 1. Then, bymultiplying equation (18) by ¢l /=1, we get

Theorem 13. A cyclic code C having a length n over R is an

z]' tm- 1C]' im»lum

(2) @ am

(2)ck " up,

(2). (19)
MDS if and only if it is principally generated by a monic
polynomial and Tore C is an MDS cyclic code havinga length n over T with réspect to Hamming metric.

Then, the degree of LHS of equation (19) is n - 1 but thatof RHS is atmost n - 2 which is a contradiction. Therefore,
z" t lu,,(z) cannot be expressed as a linear combination

B0 i Qe S0k e m@LPE3N VDS Yyl

of elements of §'. We can apply similar arguments to prove
ponnomlaﬁs asin \'I/'\ﬁeorempfd{ Since C |s(7:]an MDS, ﬁ1erefore,

that none of ztn twi lu, ,(2), ztmv w2 tu, , (2),...,227 0~ luy(z) can be expressed as a linear combination of
elements of S. Therefore, we get that S is linearly
Cl @ [RI™ %#(9*%. By using Theorem 7, we have ps(n)- nin- toko- tiki- = tnkn) § pslCr du(E+1) which implies that Mim
+ tokg + trky + +++ + tpk,, € 1(dy(C) - 1). Thus, we can
conclude that t; 0 for 1<j<m and i, § O because i, +  |Toro(C)| ¢ |T|¢" %To(D* By using Theorems 7
ko+ki+--+k, 9] and t,>t,. 1> >ty2dy(C)- 1.

- dy(C)+1
pan- afiron, W9)+1) G CANGIYEE ¢ RS AMRVIDY cyclid
This implies that C is principally generated by a monic polynomial and to € d,,(C) - 1. By using Theorems 7 and 8, e

have (n- dy(Toro(0))+1) s(n- dp (Tory (C))+1) )
ps%’ 4 (dH) @ P’ %) @ |Tc?r (Cﬂ Thus, Tor (C) is an
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code over R.
The following lemma by Sharma and Sidana determinesthe Hamming distance of a cyclic code Cof length n'p’,
MDS cyclic code over the residue field T.

Conversely, suppose a cyclic code € having a length n over R is prhcipally generated by a monic polynomial, say Uo(2)
as obtained in Theorem 10 and Toro(C) is an MDS code over T. Then, this means that i, € 0 and

[1, ifto §0,
n,p 1, and r=1 over a finite chain ring R as given inreferehce [27]. m|

Lemma 2 (see [27]). Let Cbe a cyclic code having a length
n€ np for (n,p) € 1 and r>1 over R. Then, we have

1+2, iflp-t+1<to<(1+1)p-t,
withO<l<p- 2,

(i+1)pk, ifp'- pr.k+(i_ 1]pr'k'1+1StoSpr- pr.k+ipr.k.1,
withl<isp-landlsksr- 1

We use Lemma 14 mentioned abovg to d€ermine all MHDR cyclic codes of length n'p", n’,p 1andr=1overRin
Theorems 15 and 16.

Theorem 3. A cyclic code C of length n'p, (n’, p) € 1 over

(i) fork@r-1,t,@p -p+i1<i<p-1, the Hamming distance of C is (i+1)p~ ! C is anMHDR code if and
only if (i+L)p~'@n- rank(C)+1@ty+1 by using Theorem 12.
Then, we have p - p+i@to @ (i+1)p~1- 1 It

a finite chain ring R is an MHDR code. ( -)O(+ ) - )

Proof. Let Cbe a cyclic code of length n'p, (n, p )€ 1over R.By Lemma 14, we have
follows that p p™~ 1 1 i 1 p~' 1,whichimplies that i p 1, sincegp™ 1 # 1. Then, Cis an
MHDR fort, p" 1.Iltcan be easily seen that forother values of to, Cis not an MH®R code. O

Theorem 4. Let C be an MDS cyclic code having an ar-
bitrary length over R. Then, C is also an MHDR code over R.

which implies that d,(C) @ to+ 1€ n- rank(C) +1 forO<t, <p -1 by using Theorem 12. Hence, a cyclic code of

Proof. Let C be an MDS cyclic code having an arbitrary length
length n'p, (n, p) € 1 over R is always an MHDR code. O

Theorem 5. Let C be a cyclic code having a length n fp’, r>1 over R. Then, C is an MHDR if and only ifto € 0,1,
pr-1.

Proof. By Lemma 14, we have the following:
(i) for to @, the Hamming distance of C is 1, which isthe same as n  rank C 1 by using Theorem 12. So, C is an
MHDR code. - ()+

(i) for Ip™ * + 1<ty < (/+ PYp~ Y with0</<p- 2, the Hamming distance of Cis /2. Here, Cis an MHDR if and only
ifd, C n rank C 1,i.e.# 1 t;byusing Theorem 12. Then, /o~ 1<tywouldimply Ip~1 1</ 1, ie,
I p~1 1 <0.Itfollow§s Y&t Fp~*( 1+ 0O, which implies / 0, since p~ *#1. Then, C is an MHDR if and
only@t, @ 1. +

nover R. By Theorem 13, C i principally genérated-by A monicpolynomial over R say Ug(z) with degrees t,and i, € 0 and Tor
o(C) is also an MDS cdde over T9Then, we have

Tory(C) ¢ p°(7 (1), (22)
Also, from Theorem 7, we have
Tory(C) ¢ p (%), (23)
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Equations (22) and (23) together with Theorem 12 implythatdy, C t; 1 n rank C 1. Therefore, Cis an MHDR
cyclic code over R. O
()e + & - ()+

However, Example 1 shows that the converse of the abovementioned statement is not true.

Example 1. Let R€ Z +5Z. Let C€ (5 (z- 1)**) bea cyclic code having a length n € 25 over R. Here, iy €
1,90t €0, t; € 24, rank(C) € 25, and d,(C) € 1.

By using Theorem 16, we see that Cis an MHDR cyclic codeover R. However, C is not an MDS code, since it is not principally
generated (using Theorem 17).

Example 2. Let R@Zs +5Z:. Let C €@ @ -1 %) Ye a cy- clic code having a length n 25 over R. Here, ip 0, to 24,rank C 1,
and dy C 24. By using ®heorem 16, we see¢hat C & an MHDR cyclic code over R. Also, Cis an MDScode, since it is

prindipdif generatedby Hmonic polynomialand |Tory (C)] ¢ 5 ¢ 12| 97 (* (using Theorem 13).

Example 3. Let R@ Z,+ CZ, + C?Z,+ C3Z,. Let C@ ((2° -1) +c(z- 1) + c?(z- 1) +c®) be a cyclic code havinga
length n € 6 over R. Here, io € 0, to € 2, rank(C) € 4, andd,(C) € 3. It is principally generated by a monic poly-pnomial
and Tor, C 24 7z, m dlTon(C)+L  26-3+1 2%, 50 we see that C is an MDS code over R by using Theorem

ﬁH Slés?;o dfer?m TPeﬂrgn lglw? see that C % also aa

Example 4. Let R €, ¢Z, ¢°Z, &7, Let ¢ @z 1 c®z% 1 beacyclic code having a length n 6 over R.
Here,~ io )%, t& 3,rdhk ¢ 3, and 2. Itisnot g@nerated by a monic polynomial, so by Theorem 13, Cis not an MDS
code. Also, from 'Iﬁeoren?lS we s(ee)tétasnot ar( IQ/@IDR code.
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