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1. Introduction 

Coding theory aims to provide optimal codes for detecting and correcting a maximum number of errors during data 

transmission through noisy channels. Cyclic codes have been in focus due to their rich algebraic structure which 

enables easy encoding and decoding of data through the process of channel coding. Cyclic codes over rings have 

gained a lot of importance after the remarkable break- through given by Hammons et al. in reference [1]. A vast 
literature is available on the structure of cyclic codes over fields, integer residue rings, Galois rings, finite chain rings, and 

some finite nonchain rings [2–29]. Cyclic codes over finite chain rings with length coprime to the characteristic of residue 

field have been investigated in references [2, 16, 22]. Islam and Prakash have established a unique set of gener- ators for 

cyclic codes over Zpk in reference [4] and for cyclic codes over Fq       uFq, u2     0 in reference [5]. A. Sharma and 
T. Sidana have studied cyclic codes of ps length over finite 
chain rings in reference [15], thereby extending the results of Kiah et al. on cyclic codes over Galois rings [14]. Dinh explored 

the structure and properties of cyclic codes of length ps over finite chain rings with nilpotency index 2 [13]. However, in most 

of the studies, there have been some limitations on either the length of code or the nilpotency index of the ring. We do not 

impose any such restriction in this paper. Salagean made use of the existence of a Grobner basis for an ideal of a polynomial 
ring to establish a unique set of generators for a cyclic code over a finite chain ring with arbitrary parameters [18]. Al-Ashker et 

al. have also worked in the same direction in the paper [28] by extending the novel approach given by Siap and Abualrub [12] 

which pulls back the generators of a cyclic code over Z2 to establish the structure of cyclic codes over the ring Z2      uZ2

 uk−  1 
Zk 1, uk 0. They have also extended this approach over the finite   chain   ring   Fq       uFq uk−  1Fq   1 ,   uk     0   [24]. 
Monika and Sehmi have given a constructive approach 
to establish a generating set for a cyclic code over a finite chain ring by making use of minimal degree polynomials of 

certain subsets of the code [20]. We make some advance- ments to this study by establishing a unique set of generators for a 

cyclic code over a finite chain ring with arbitrary parameters. It is noted that this unique set of generators retains all the 

properties of generators obtained in reference [20]. 

The paper is organised as follows: In Section 2, we state some preliminary results. In Section 3, we establish a unique set 

of generators for a cyclic code over a finite chain ring. In Section 4, we establish a minimal spanning set and rank of the 

cyclic code. We give sufficient as well as necessary conditions for a cyclic code to be an MDS code. We establish sufficient as 

well as necessary conditions for a cyclic code of length which is not coprime to the characteristic of residue field of the ring 

to be an MHDR code. Finally, we provide a few examples of MDS and MHDR cyclic codes over some finite chain rings. 
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2. Preliminaries 

Let R be a finite commutative chain ring. Let c be the unique maximal ideal of R and ] be the nilpotency index of c. Let Fq     R/ 

c   be the residue field of R, where q     ps for a prime p and a positive integer s. 
The following is a well-known result (for reference, see 

[15]). 

 
Proposition 1. Let R be a finite commutative chain ring. Then, we have the following: 

3. Unique Set of Generators 

In this section, a unique set of generators for a cyclic code C of arbitrary length n over R has been established. For this, let us 

first recall the construction given by Monika et al. to obtain a generating set for a cyclic code C over a finite chain ring R 
[20]. Let f0(z), f1(z), . . . , fm(z) be minimal degree 
polynomials of certain subsets of C such that deg(fj(z)) � 
tj < n and the leading coefficient of fj(z) is equal to cij uj, where uj is some unit in R, tj < tj+1, ij > ij+1, and ij is the 

smallest  of  such  power.  If  i0 � 0,  then  f0(z)  is  a  monic 

(i) charR � pa, where 1 ≤ a ≤ ] and |R| � |Fq|] 

� ps] 

polynomial and we have m � 0. 

(ii) There exists an element ζ ∈ R with multiplicative order ps − 1. The set ⊤ � 0, 1, ζ, ζ2, . . . , ζp
s − 2 

is called the Teichmu€ller 

set of R 

(iii) Every r ∈ R can be uniquely expressed as 
]− 

 

  
Lemma 3 (see [20]). Let C be a cyclic code having a length n over R and fj z , 0 ≤ j ≤ m, be polynomials as defined above. 

Then, we have the following: 

(i) C is generated by the set fj(z); j � 0, 1, . . . , m 

 

+ α1,0u1(z) + α1,1zu1(z) + · · · + α1,t − t − 1zt2 − t1 − 1
u1(z) 

+ α0,0u0(z) + α0,1zu0(z) + · · · + α0,t − t − 1zt1 − t0 − 1
u0(z). 

 

This  implies  that  zn−  tm −  1um(z) � αm(z)  um(z) + αm− 1 (z)um−  1(z) + · · · + α0(z)u0(z), where αm  (z) �  αm,0 + αm,1 z + · · 
· + αm,n− t  − 2zn−  tm −  2       and     αi(z) � αi,0 + αi,1z + · · · + 

independent, and hence, it is a minimal spanning set for C. It follows that rank C n t0. 

The following theorem determines all the MDS cyclic 

αi,t 
i+1 

– t − 1zti+1 − ti − 1 for 0 ≤ i ≤ m − 1. Clearly, deg(αm(z)) ≤ n − 
codes of arbitrary length over a finite chain ring R. □ 
2 and deg αi z   ≤ ti 1 1 for all i, 0 ≤ i ≤ m 1. Then, by multiplying equation (18) by c]−  im−  1 , we get 

 

4. MDS and MHDR Cyclic Codes over a Finite Chain Ring 

In this section, the minimal spanning set and rank of a cyclic code C over a finite chain ring R have been established. Sufficient 

as well as necessary conditions for a cyclic code to be an MDS code and for a cyclic code to be an MHDR code have been 

obtained. Finally, to support our results, some examples of optimal cyclic codes have been presented. 

Theorem 1. Let C be a cyclic code having an arbitrary length n over a finite chain ring R. Then, rank(C) � n − t0, 

this   by   induction    on    j.    First,    we    prove    that zt1 − t0 u0(z) ∈ span S′. Clearly, zt1 − t0 u0(z) is a polynomial of degree 

t1 in C. Then, we have zt1 − t0 u0(z) − ci0 − i1 u1(z) � 

(ii) For 0 ≤ j ≤ m, f (z) � cij h (z), where h (z) is 

≠ 0 0 ≤ i ≤ ] − 1. Also, r is a unit in R if and only if r 
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q0(z)u0(z) for some q0(z) ∈  R[z] with a degree less than 

t1 − t0 which implies that zt1 − t0 u0(z) − ci0 − i1 u1(z) ∈ span S′.  Therefore,  we  have zt1 − t0 

u0(z) ∈  span   S′.   We   suppose   that   zt2 − t1 u1(z), zt3 −  t2 u2(z), . . . , ztj−  tj−  1 uj−  1(z) ∈  span  S′  for  1 ≤ j ≤ m −   1. Now, we 

will show that ztj+1 − tj uj(z) ∈ span S′. Clearly, ztj+1 − tj uj(z) is a polynomial of degree tj+1 in C. Then, we have        ztj+1 −  tj 

uj(z) −   cij−  ij+1 uj+1(z) ∈ 〈u0(z), u1(z), . . . , uj(z)〉;  and  ztj+1 −  tj uj(z) � cij−  ij+1    uj+1(z) + m0(z)u0(z)+ m1u1(z) + · · · + 

mjuj(z), where mi(z) ∈ R[z] and deg(mi(z)) < ti+1 − ti   for all i, 0 ≤ i ≤ j. This implies that 

where t0 is the degree of minimal degree polynomial in C. 
miui(z) ∈ span S′ for 0 ≤ i ≤ j, which further implies that 
ztj+1 − tj u (z) ∈ span S′.   Therefore,   we   have   ztj+1 − tj u (z) 

Proof. Let C be a cyclic code having an arbitrary length n 
zn−  tm −  1um(z) � αm,0um(z) + αm,1zum(z) + · · · + αm,n− t  − 2zn−  tm −  2um(z) 

+ αm− 1,0um−  1(z) + αm− 1,1zum−  1(z) + · · · 

+ αm− 1,tm − t 

 
m− 1 

–  1z
tm −  tm−  1 −  1um−  1(z) + · · · 

 (18) 

+ α1,0u1(z) + α1,1zu1(z) + · · · + α1,t − t − 1zt2 − t1 − 1
u1(z) 

+ α0,0u0(z) + α0,1zu0(z) + · · · + α0,t − t − 1zt1 − t0 − 1
u0(z). 

 

This  implies  that  zn−  tm −  1um(z) � αm(z)  um(z) + αm− 1 (z)um−  1(z) + · · · + α0(z)u0(z), where αm  (z) �  αm,0 + αm,1 z + · · 
· + αm,n− t  − 2zn−  tm −  2       and     αi(z) � αi,0 + αi,1z + · · · + 

independent, and hence, it is a minimal spanning set for C. It follows that rank C n t0. 

The following theorem determines all the MDS cyclic 

αi,t 

2 and deg αi z   ≤ ti 1 1 for all i, 0 ≤ i ≤ m 1. Then, by multiplying equation (18) by c]−  im−  1 , we get 

Theorem 13. A cyclic code C having a length n over R is an 

z]−  tm −  1c]−  im−  1 um
 

 (z) � αm 

 (z)c]−  im−  1 um 

 (z). (19) 
MDS if and only if it is principally generated by a monic 
polynomial and Tor0 C is an MDS cyclic code having a length n over ⊤ with respect to Hamming metric. 

Then, the degree of LHS of equation (19) is n − 1 but that of RHS is atmost n − 2 which is a contradiction. Therefore, 
zn−  tm −  1um(z) cannot be expressed as a linear combination 

Proof. Let C � 〈u0(z), u1(z), . . . , um(z)〉 be an MDS cyclic 
code having a length n over R such that u (z), 0 ≤ j ≤ m are 

of elements of S′. We can apply similar arguments to prove 
polynomials as in Theorem 10. Since C is an MDS, therefore, 

that  none  of  ztm −  tm−  1 −  1um−  1(z), ztm−  1 −  tm−  2 −  1um−  2    (z), . . . , zt1 − t0 − 1u0(z) can be expressed as a linear combination of 

elements of S′. Therefore, we get that S′   is linearly 

|C| � |R|n−  dH (C)+1.    By    using    Theorem    7,    we    have ps(n]−  nim −  t0 k0 −  t1 k1 −  ···−  tmkm )  � ps](n−  dH(C)+1)  which implies that nim 

+ t0k0 + t1k1 + · · · + tmkm � ](dH(C) − 1). Thus, we can 

conclude  that  tj  � 0  for  1 ≤ j ≤ m  and im  � 0  because im  + |Tor0(C)| � |⊤|(n−  dH(Tor0 (C))+1)
.   By   using   Theorems   7 

k0  + k1  + · · · + km  � ]  and  tm > tm−  1 >  · · ·  > t0 ≥ dH(C) −   1. 

and 8, we can conclude that |R|n−  dH(C)+1  � ps](n−  dH(Tor0 (C))+1)  � ps](n−  t0 )  � |C|, i.e., C is an MDS cyclic 
This implies that C is principally generated by a monic polynomial and t0 � dH(C) − 1. By using Theorems 7 and 8, we       
have       |⊤|(n−  dH(Tor0(C))+1)  �        ps(n−  dH (Tor0 (C))+1)  � 
ps(n−  dH(C)+1)  � ps(n−  t0 )  � |Tor  (C)|.  Thus,  Tor  (C)   is  an 
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code over R. 

The following lemma by Sharma and Sidana determines the Hamming distance of a cyclic code C of length n′pr, 

MDS cyclic code over the residue field ⊤. 
Conversely, suppose a cyclic code C having a length n over R is principally generated by a monic polynomial, say u0(z) 

as obtained in Theorem 10 and Tor0(C) is an MDS code over ⊤. Then, this means that i0 � 0 and 
 

⎪⎧
⎪ 

1, if t0 � 0, 

n′, p 1, and r ≥ 1 over a finite chain ring R as given in reference [27]. □ 

 
Lemma 2 (see [27]). Let C be a cyclic code having a length 

n � n′pr for (n′, p) � 1 and r ≥ 1 over R. Then, we have 

l + 2, if lpr− 1 + 1 ≤ t0 ≤ (l + 1)pr− 1 , 

with 0 ≤ l ≤ p − 2, 

(i + 1)pk,    if pr −   pr− k +(i −   1)pr− k− 1 + 1 ≤ t0 ≤ pr −  pr− k + ipr− k− 1, 
 

We use Lemma 14 mentioned above to determine all MHDR cyclic codes of length n′pr,   n′, p     1 and r ≥ 1 over R in 

Theorems 15 and 16. 

 
Theorem 3. A cyclic code C of length n′p, (n′, p) � 1 over 

(i) for k � r − 1, t0 � pr − p + i, 1 ≤ i ≤ p − 1, the Hamming  distance  of  C  is  (i + 1)pr−  1.  C  is  an MHDR    code    if    and    

only    if    (i + 1)pr−  1 � n −   rank(C) + 1 �
r 

t0  + 1   by   using   Theorem   12. 
Then,  we  have  p   −   p + i � t0  �  (i + 1)pr−  1 −   1.  It 

a finite chain ring R is an MHDR code. 

 
Proof. Let C be a cyclic code of length n′p, n′, p 1 over R. By Lemma 14, we have 

follows that p  pr−  1  1 i 1   pr−  1 1 , which implies that i p 1, since pr−  1 ≠ 1. Then, C is an 

MHDR for t0 pr 1. It can be easily seen that for other values of t0, C is not an MHDR code. □ 

Theorem 4. Let C be an MDS cyclic code having an ar- 

     
which implies that dH(C) � t0 + 1 � n − rank(C) + 1 for 0 ≤ t0 ≤ p − 1 by using Theorem 12. Hence, a cyclic code of 

 

Proof. Let C be an MDS cyclic code having an arbitrary length 

length n′p, (n′, p) � 1 over R is always an MHDR code.  □ 

Theorem 5. Let C be a cyclic code having a length n n′pr, r > 1 over R. Then, C is an MHDR if and only if t0 ∈ 0, 1, 
pr − 1 . 

Proof. By Lemma 14, we have the following: 

(i) for t0 0, the Hamming distance of C is 1, which is the same as n    rank C    1 by using Theorem 12. So, C is an 
MHDR code. 

(ii) for lpr−  1    1 ≤ t0 ≤   l     1 pr−  1 with 0 ≤ l ≤ p     2, the Hamming distance of C is l 2. Here, C is an MHDR if and only 

if dH   C     n    rank C     1, i.e., l     1     t0  by using Theorem 12. Then, lpr−  1    1 ≤ t0 would imply lpr−  1    1 ≤ l     1, i.e., 

l  pr−  1    1  ≤ 0. It follows  that  l  pr−  1    1      0,  which  implies  l     0, since pr−  1 ≠ 1. Then, C is an MHDR if and 

only if t0 � 1. 

n over R. By Theorem 13, C is principally generated by a monic polynomial over R say u0(z) with degrees t0 and i0 � 0 and Tor 

0(C) is also an MDS code over ⊤. Then, we have 

Tor0(C)  � ps(n−  dH(C)+1). (22) 

Also, from Theorem 7, we have 

Tor0(C)  � ps(n−  t0 ). (23) 

bitrary length over R . Then, C is also an MHDR code over R . 

with 1 ≤ i ≤ p − 1 and 1 ≤ k ≤ r − 1.  
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Equations (22) and (23) together with Theorem 12 imply that dH   C   t0  1    n    rank C    1. Therefore, C is an MHDR 

cyclic code over R. □ 
 

However, Example 1 shows that the converse of the abovementioned statement is not true. 

 
Example 1. Let R � Z5 + 5Z5. Let C � 〈5, (z − 1)24〉 be a  cyclic  code  having  a  length  n � 25  over  R.  Here, i0 � 
1, i1 � 0, t0 � 0, t1 � 24, rank(C) � 25, and dH(C) � 1. 

By using Theorem 16, we see that C is an MHDR cyclic code over R. However, C is not an MDS code, since it is not principally 

generated (using Theorem 17). 

 
Example 2. Let R    Z5     5Z5. Let C       z    1 24   be a cy- clic code having a length n 25 over R. Here, i0 0, t0 24, rank C  1, 

and dH  C   24. By using Theorem 16, we see that C is an MHDR cyclic code over R. Also, C is an MDS code, since it is 

principally generated by a monic polynomial and |Tor0(C)| � 5 � |Z5|n−  dH(Tor0 (C))+1  
(using Theorem 13). 

Example 3. Let R � Z2 + cZ2 + c2Z2 + c3Z2. Let C � 〈(z2 − 1) + c(z − 1) + c2(z − 1) + c3〉  be  a  cyclic  code  having a 

length n � 6 over R. Here, i0 � 0, t0 � 2, rank(C) � 4, and dH(C) � 3. It is principally generated by a monic poly- nomial  

and   Tor0   C 24 Z2  
n− dH(Tor0(C))+1 26− 3+1 24, so we see that C is an MDS code over R by using Theorem 

13. Also, from Theorem 15, we see that C is also an 
MHDR code. 

 

Example  4. Let  R    Z2      cZ2      c
2Z2      c

3Z2.  Let  C       c2 z3   1   c3 z2   1   be a cyclic code having a length n   6 over R. 

Here, i0      2, t0      3, rank C      3, and dH   C      2. It is not generated by a monic polynomial, so by Theorem 13, C is not an MDS 

code. Also, from Theorem 15, we see that C is not an MHDR code. 
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