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1. Introduction 

Let H be a complex separable Hilbert space with inner product 〈·, ·〉 and B(H) be the algebra of bounded linear 

operators on H. The numerical range W(T) of an operator T ∈ B(H) is defined as 

W(T) � {〈T𝑥, 𝑥〉 : 𝑥 ∈ H, ‖𝑥‖ � 1}. (1) 

It is known that W T is a nonempty bounded convex set in the complex plane C and its closure, denoted by W T , always 

contains the spectrum σ T of T (see [1, 2]). In addition,   for   T1, T2 ∈ B H ,   we   have    W T1 ⊕ T2 conv W T1   ∪ W 
T2    ,   where   conv S stands for the convex hull of the set S. For references on the numerical range 

and its generalizations, see, for instance, [3–8]. 
This paper arose from an attempt to gain a geometric characterization of the numerical range of parallel sum with a view 

of operator block. In what follows we always suppose A, B ∈ B H  and A    B has closed range. The parallel sum of A and B is 
defined as 

electrical networks, then A : B is the impedance operator of the parallel connection [11]. Several authors, in particular 

Anderson and Trapp [11], Anderson and Duffin [12], Ando [13], and Wang et al. [10], extended this result and estab- lished 
many diferent equivalent definitions and properties on parallel sum (see also [9, 10]). Recently, Klaja [14] applied Halmos’ 

two projections theorem to describe the numerical range of a product of two orthogonal projections P and Q. He showed that 

the closure of its numerical range is equal to a closed convex hull of some ellipses parametrized by points in the spectrum. In 

[8], Wang et al. also used Halmos’ two projections theorem to study the containment region of the numerical range of the 

product of a pair of positive con- tractions. Zhang and Yu [15] described the numerical range of the operator P QP. 

Motivated by these, we consider the numerical range of the parallel sum P : PQ for orthogonal projections P and Q. The 

investigation uses in an essential way Halmos’ two projections theorem, which is introduced as follows. 
Let P and Q be two orthogonal projections on H. Thus, 

A : B � A(A + B)†B, 

          P P2 P∗ and Q Q2 Q∗. The ranges of P and Q are 

denoted by L and N, respectively. According to Halmos’ 

where T† is the Moore–Penrose generalized inverse of T (see [9, 10]). The study of parallel sum is motivated by the fact that if 

A and B are impedance operators of resistive n-port 

two projections theorem (see [16] and consult [17] for the history and more on the subject), there is a representation of H 
as an orthogonal sum: 
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FIgurE 1: Ellipse E(λ) for λ � 0.02, 0.05, 0.1, 0.15 . . . , 0.45, 0.48, 0.5. 

 

Since E λ   is symmetric about y 0, only α ∈ 0, π needs to be considered, and the proof will be divided into two 

cases. 

Case One. Suppose that cos(α) ≠ 0. It follows from 
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□ Proof of Theorem 1. From Lemmas 6 an 

 . 

mpleted. 



Review of International Geographical Education                              ©RIGEO, Volume 9 (1) Jan 2019  

4 

 

∈ (P: 

  { } 

 

I + 3 cos2(T) 
⎟⎠

. (44) 

λ ∈ σ(P : PQ) � {0,1/2} and E(0) � {0}, E(1/2) 
� [0, 1/2]. Thus, W(P : PQ) � [0, 1/2] � conv{E(0) 

range of P : PQ on   the   space   (L ∩ N) ⊕ H 

 
  

 

 

 
 
 
 
 
 

The proof is co 

 

Then, we can prove Theorems 1 and 2. 
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⎟⎣λ cos(α) +  
–   λ2 sin2(α) ⎟⎦ 

ρE(λ)(α). 
∈σ(P:PQ) 

 

It follows from Lemma 6 that 
 

W(P : PQ) � convλ σ ∪ 
PQ) 

E(λ). (43) 

 
 

The proof is completed. □ 
 

Proof of Theorem 2. From the matrix form in (2), we have 

cos2(T)I + cos2(T) 

  

cos(T) sin(T)I + cos2(T) 
⎟⎞⎟

 

 
 

 
 

Suppose H into two cases. 

� {0}. The following proof will be divided 

Suppose H ≠ 0 . The following proof will be divided into two cases. 

 (1) If L ∩ N ≠ {0}, then W(P : PQ) � W(1/2I ⊕ 0 

⊕ 0 ⊕ 0) � conv{{0} ∪ {1/2}} � [0, 1/2]. In this case, 

(3) If L ∩ N � {0}, we have P : PQ � 0 on the space 

(L ∩ N) ⊕ H. Thus, the closure of the numerical 

∪ E(1/2)} � conv ∪ λ∈σ(P:PQ)E(λ). 

 

{0} ⊂ E(λ) 
 

  
 

 
 

 

W(P : PQ) � conv ∪ λ∈σ(P:PQ)E(λ) on the space 

(L ∩ N) ⊕ H. 

(4) If L ∩ N ≠ {0}, we have P : PQ � 1/2I on the space (L ∩ N) ⊕ H. Thus, the closure of the numerical range of P : PQ 

for all λ ∈ [0, 1/2], we can have (2) If L ∩ N � {0}, we have W(P : PQ) � {0} � E(0). 

I + 3 cos2(T) P : PQ ∼ 
1 

I ⊕ 0 ⊕ 0 ⊕ 0 ⊕ 
2 

( )( ) � 
λ 2

 

is 
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on the space (L ∩ N) ⊕ H is conv{1/2} ∪ conv ∪ λ∈σ(P:PQ)E(λ)}. As {0} ⊂ E 
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