
 
  



Review of International Geographical Education                               ©RIGEO, Volume 8 (2) June 2018  

403 

 

( ) � 

uv∈E| u − v| ( ) �  | − | 

Computational Principles and Experimental Investigation of 

Local Non-Regular Topological Indices of TUC4C8 [p, q] and 

GTUC [p, q] Nanostructures 
 

K R Girish1, Dr N Prabhudeva2, Jayashree D N3 

Asst. Professor1, Professor & HOD2, Assoc. Professor3 

girishhspt@gmail.com1, drnprabhudeva@gmail.com2 , jayashreedn12@gmail.com3 

Department of Mathematics, Proudhadevaraya Institute of Technology, T.B. Dam Road, Hosapete, 

Karnataka-583225 

Abstract:  

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Any molecular or nanostructure may have its topology described by a topological index. To forecast the physical properties 

linked to bioactivities and chemical reactivity in certain networks, topological indices are used in QSAR and QSPR studies. A 

wide variety of physical, mechanical, and chemical properties are shown by 2D nanostructured materials. These very thin 

nanoparticles exhibit anisotropy and great chemical functionality. Because of their thin profile and large surface area, 2D 

materials are the best option for applications that need strong surface interactions at a microscopic scale. In this work we obtain 

closed form formulas for the neighbourhood irregular topological invariants of the nanostructures TUC4C8[p, q] and GTUC[p, 

q]. Following the computation of these indices, a comparison analysis is carried out.  

 

Keywords; Principles and Experimental, Investigation of Local, Non-Regular, Topological, Indices of TUC4C8. 
 

1. Introduction 

Carbon nanotubes (CNTs), cylindrical molecules composed of rolled-up sheets of single-layer carbon atoms (graphene), come 

in two main types: single-walled and multiwalled. Single-walled nanotubes have a diameter of less than one nanometer (nm), 

while multiwalled nanotubes exceed one hundred nm and consist of multiple concentrically inter- connected nanotubes. The 

discovery of multiwalled carbon nanotubes took place in 1991 by Sumio Iijima, [1]. Chem- ically, sp2 bonds–a very potent 

type of molecular inter- action–bind CNTs together. Since the direction in which the graphene layers roll up determines the 

electrical properties of a material, these nanotubes also inherit those charac- teristics. Furthermore, carbon nanotubes (CNTs) 

exhibit distinctive mechanical and thermal properties, including but not limited to lightweight composition, high tensile strength, 

low density, superior thermal conductivity, high aspect ratio, and exceptional chemical stability. Since CNTs are the ideal choices 

for electron field emitters, transistors, cathode ray tubes (CRTs), electronic devices, and transistors, all of these qualities make 

them intriguing for the development of new materials. Modeling and characterizing these carbon nanotubes (CNTs) is essential 

for gaining a deeper un- derstanding of their structural topology and enhancing their physical characteristics. This becomes 

particularly crucial given their diverse range of applications and significance. 

Mathematical chemistry involves the study of chemical structures using mathematical methods and approaches. Chemical 
graph theory is a discipline of chemistry that transforms chemical occurrences into mathematical models using graph theory 

ideas. Atoms and chemical bonds are depicted as the vertices and edges, respectively, in the straightforward linked graph 
often termed the chemical graph. Using the graph G and edge set E, it is possible to create a connected graph with an order 
of n  V G  and a size of m E G . Research in the field of nanotechnology primarily centers on atoms and molecules. A 

2D lattice is 
certain bioconjugate networks and their structural modeling through irregularity topological indices is presented in [6]. The article 

[7] delves into the quantitative structure-property re- lationship (QSPR) analysis of novel drugs employed in blood cancer 

treatment, utilizing degree-based topological indices and regression models. Investigating rational curve fitting between topological 

indices and entropy measures for graphite carbon nitride is the focus of [8]. The computation of degree-based topological indices 

for porphyrazine and tetrakis porphyrazine is conducted in [9]. 

The Albertson index (AL) [10], created by Albertson, is a degree-based index that is constructed as AL G 
d d , and Vukicevic and Gasparov defined the irregularity index [11] as IR G  uv∈E ln du  ln dv . Abdoo et al. 

defined the total irregularity index (IRRT) [12] as IRRT(G) � (1/2)uv∈E|du − dv|. Gutman presented the IRF(G) irregularity 

index [13] as IRF(G) � uv∈E(du − dv)
2
. 

NIRB(G) uvϵE(δu
(1/2) − δv

(1/2))2 
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explored for their topological invariants [19, 20]. The TI of nanotubes and nanotori of the V-phenylenic type have been studied 

in [21], and armchair polyhex type nanotubes in [22]. However, despite all of these studies, the nanostructure topology is still 

not fully understood. In this study, we have formulated closed expressions for key neighborhood ir- regular topological indices 

pertaining to the nanostructures TUC4C8 p, q and GTCU p, q , and a comparative analysis is also performed 

 

2. TUC4C8[p, q] Nanotorus and Nanotube 

In this section, we first presented the structure of TUC4C8[p, q]. The number of octagons in row and column 
The Randic´ index (Li and Gutman) [14] is defined as 
of nanostructure TUC4C8[p, q] is q and p, respectively. In 

IRA G uv∈E d(
u

− 1/2) 
dv

(− 1/2) 2
. In 2018, Reti et al. [15] introduced the following irregularity topological indices: 

IRDIF(G) � uv_∈E|(du/dv) − (dv/du)|, IRLF(G) � uv∈E 
the TUC4C8 p, q nanostructure, [p, q], the total number of squares and octagons is the same in each column. In 2D lattice of 
TUC4C8[p, q], the total number of octagon in 
(|du − dv|/  dudv ), LA(G) � 2uv∈E(|du − dv|/(du + dv)), 

column and row is, respectively, p and q. In the 2D lattice of 

and IRDI(G) � uv∈E ln1 + |du − dv|. Chu et al. Abid have 
defined the IR_GA(G) in [16] as IRGA(G) � uv∈E ln 

TUC4C8[p, q], the total number of squares in a row and column are (q + 1) and (p + 1). 

(du + dv/2  dudv ). The bond-additive index was described 
The number of vertices and edges of Figures 1(a) and 1(b) are 

in [17] as IRA(G) � uv∈E(d(1/2) − d(1/2))
2
. Very recently, 

 (4q2 + 4q)(p + 1) and 6pq + 5q + 5p + 4, respectively. In Table 2, we have shown the edge partition of TUC4C8[ p, q ]. 
Ullah et al. [18] introduced the concept of neighborhood 
version of irregularity topological indices. Motivated by [18], we have computed the neighborhood-based irregularity topological 

indices for the nanostructures TUC4C8[p, q] and 

Correspondingly, for GTUC[p, q], vertex set and edge set remain 4pq + 4q and 6pq + 5q. 

 
Theorem 1. Let G ∈ TUC C [ p, q ] nanotorus. Then, one 

GTUC p, q . The list of those indices is given in Table 1. 

There have been numerous attempts to look into the TI for different nanotubes and nanosheets in the literature. 

has NAL 

4  8 

(G) � 12p + 12q. 
Pentaheptagonal nanosheets and TURC4C8(S) are both Proof. By definition 

 

 

NAL(G) �  δu − δv 
 

� (6pq − 5p − 5q + 4)|9 − 9| + 4(p + q − 2)|9 − 8| + 2(p + q + 2)|8 − 8| + 4|8 − 6|(p + q − 2) + 8(8 − 5) + 4(5 − 5) 

� 4(p + q − 2) + 4(2)(p + q − 2) + 3(8) + 4(0) 

� 12p + 12q. 

 

uvϵE 
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(a) (b) 

FIGuRE 1: The TUC4C8[p, q] with (a) q � 5 and p � 3 and (b) q � 5 and p � 5. 
 

Theorem 2. Let G ∈ TUC4C8[p, q] nanotorus. Then, one has 

NIRL(G) � 1.62186p + 1.62186q + 0.5163088. (2) 

 

 

NIRL(G) �  ln δu − ln δv 

Proof. By definition 

� (6pq − 5p − 5q + 4)(ln 9 − ln 9) + 4(p + q − 2)(ln 9 − ln 8) + 2(p + q + 2)(ln 8 − ln 8) 

+ 4(p + q − 2)(ln 8 − ln 6) + 8(ln 8 − ln 5) + 4(ln 5 − ln 5) 

� (4p + 4q − 8)(0.117783) +(4p + 4q − 8)(0.287682) + 8(0.4700036) 

� 0.471132p + 0.4771132q − 0.942264 + 1.1507728p + 1.150728q − 2.301456 + 3.7600288 

NIRL(G) � 1.62186p + 1.62186q + 0.5163088. 

 

Theorem 3. Let G ∈ TUC4C8[p, q] nanotorus. Then, one has 

NIRRL(G) � 6p + 6q. 

Proof. By definition 

NIRRL(G) � 
1 

 δu − δv 

1 1 1 
� (6pq − 5p − 5q + 4) 

2 
|9 − 9| + 4(p + q − 2) 

2 
|9 − 8| + 2(p + q + 2) 

2 
|8 − 8| 

1 1 1 

+ 4(p + q − 2) 
2 

|8 − 6| + 8 
2 

|8 − 5| + 4 
2 

|5 − 5| 

� 2(p + q − 2)(1) + 2(p + q − 2)(2) + 4(3) 

� 2p + 2q − 4 + 4p + 4q − 8 + 12 

NIRRL(G) � 6p + 6q. 

 
Theorem 4. Let G ∈ TUC4C8[p, q] nanotorus. Then, one has 

NIRF (G) � 20p + 20q + 32. 
 

 

NIRF(G) �  ( δu − δv
2
 

Proof. By definition 

� (6pq − 5p − 5q + 4)(9 − 9)
2 

+ 4(p + q − 2)(9 − 8)
2
 

uvϵE 

uvϵE 

2 
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NIRDIF(G) �  
δu − 

δv  

+ 2(p + q + 2)(8 − 8) 

+ 4(p + q − 2)(8 − 6) + 8(8 − 5) + 4(5 − 5) 

� 4p + 4q − 8 + 16p + 16q − 32 + 72 

NIRF(G) � 20p + 20q + 32. 

 
Theorem 5. Let G ∈ TUC4C8[p, q] nanotorus. Then, one has 

NIRA(G) � 0.013607344p + 0.013607344q + 0.0429636. 

(6) 

Proof. By definition 

� 4(p + q − 2)9
(− 1/2) 

− 8
(− 1/2)2 

+ 4(p + q − 2)8
(− 1/2) 

− 6
(− 1/2)2 

+ 88
(− 1/2)

− 5
(− 1/2)2 

� 4(p + q − 2)(0.33333 − 0.353553)
2 

+ 4(p + q − 2)(0.353553 − 0.408249)
2 

+ 8(0.353553 − 0.4472135) 

� 4(p + q − 2)(0.0004101840) + 4(p + q − 2)(0.002991652) + 8(0.0087722) 

� 0.001640736p + 0.001640736q − 0.003281472 + 0.011966608p + 0.011966608q − 0.023933216 + 0.0701783 

NIRA(G) � 0.013607344p + 0.013607344q + 0.0429636. 

Theorem 6. Let G ∈ TUC4C8[p, q] nanotorus. Then, one has 

□ 

NIRDIF(G) � 3.27774p + 3.27774q + 1.24448. (8) Proof. By definition 

 

 

uvϵE
δv 

 

� (6pq − 5p − 5q + 4)
9 

− 

9
 + 4(p + q − 2)

8 
− 

9
 + 2(p + q − 2)

8 
− 

 

+ 4(p + q − 2)
6 

− 
8
 + 8

5 
− 

8
 + 4

5 
− 

5
 

� 4(p + q − 2)(1.125 − 0.88889) + 4(p + q − 2)(1.3333 − 0.75) + 8(1.6 − 0.625) 

� 0.94444p + 0.94444q − 1.88888 + 2.333332p + 2.33332q − 4.66664 + 7.8 

NIRDIF(G) � 3.27774p + 3.27774q + 1.24448. 

□ 
Theorem 7. Let G ∈ TUC4C8[p, q] nanotorus. Then, one has 

NIRLF(G) � 1.62611045p + 1.62611045q + 0.5425231. 

(10) 

Proof. By definition 

 

N (G) �  
δu − δ

_v
 

� (6pq − 5p − 5q + 4) √
9 × 9 

+ 4(p + q − 2) √
9 × 8 

+ 2(p + q + 2) √
8 × 8

 

 |8 − 6|  |8 − 5|  |5 − 5| 

+ 4(p + q − 2) √
8 × 

_
6 

+ 8 √
8 × 

_
5 

+ 4 √
5 × 

_
5
3� 4(p + q − 2) √

72 
+ 4(p + q − 2) √

48 
+ 8 √

40
 

� 0.471404p + 0.471404q − 0.9428090 + 1.1547005p + 1.154700538q − 2.3094010 + 3.7947331 

NIRLF(G) � 1.62611045p + 1.62611045q + 0.5425231. 
 

2 
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Based on the proof of Theorem 7, it is easy to calculate the following result. □ 

Corollary 8. Let G ∈ TUC4C8 p, q nanotorus. Then, one has 

NLA(G) � 1.61344537p + 1.61344537q + 0.46541694. 

(12) 

Proof. By definition 
 

 

NLA 

δu − δv 

uvϵE( δu + δv 

� (6pq − 5p − 5q + 4)2 
 |9 − 9| 

+ 4(p + q − 2)2 
 |9 − 8| 

+ 2(p + q + 2)2 
 |8 − 8|

 

 (9 + 9) 
 (9 + 8) 

 (8 + 8) 

+ 4(p + q − 2)2 
 |8 − 6| 

+ 8(2) 
 |8 − 5| 

+ 4(2) 
 |5 − 5|

 
(8 + 6) (8 + 5) (5 + 5) 

� 0.47058823p + 0.47058823q − 0.94117647 + 1.14285714p + 1.14285714q − 2.28571428 + 3.69230769 

NLA(G) � 1.61344537p + 1.61344537q + 0.46541694. 

□ 
Theorem 9. Let G ∈ TUC4C8[p, q] nanotorus. Then, one has 

NIRDIG) � 7.167036p + 7.167036q − 3.243771. (14) 

 

 

NIRDIG) �  ln 1 +δu − δv 

Proof. By definition 

� (6pq − 5p − 5q + 4)ln(1 +|9 − 9|) + 4(p + q − 2)ln(1 +|9 − 8|) + 2(p + q + 2)ln(1 +|8 − 8|) 

+ 4(p + q − 2)ln(1 +|8 − 6|) + 8 ln(1 +|8 − 5|) + 4 ln(1 +|5 − 5|) 

� 4(p + q − 2)ln(1 + 1) + 4(p + q − 2)ln(1 + 2) + 8 ln(1 + 3) 

� (4p + 4q − 8)(0.693147) +(4p + 4q − 8)(1.098612) + 11.0903 

� 2.772588p + 2.772588q − 5.545176 + 4.394448p + 4.394448q − 8.788896 + 11.0903 

NIRDIG) � 7.167036p + 7.167036q − 3.243771. 

 
□ 

Theorem 10. Let G ∈ TUC4C8 p, q nanotorus. Then, one has 

Proof. By definition 

NIRGA(G) � 0.048817p + 0.04817q + 0.1255859. (16) 

 

 

NIRGA(G) �  ln 
δu  + δv

 

 

� (6pq − 5p − 5q + 4)ln 
2

√
9 × 

_
9 

+ 4(p + q − 2)ln 
2

√
9 × 

_
8 

+ 2(p + q + 2)ln 
2
√

8 × 
_
8
 

 |8 + 6|   |8 + 5|   |5 + 5|  

+ 4(p + q − 2)ln 
2
√

8 × 6 
+ 8 ln 

2
√

8 × 5 
+ 4 ln 

2
√

5 × 5
 

17� 4(p + q − 2)ln 
2
√

72 
+ 4(p + q − 2)ln 

2
√

48 
+ 8 ln 

2
√

40
 

� 0.00693241p + 0.006993241q − 0.013864 + 0.04123857p + 0.041123857q − 0.082477 + 0.21889959 

uvϵE 
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NIRGA(G) � 0.048817p + 0.04817q + 0.1255859. 
□

 

Theorem 11. Let G ∈ TUC4C8 p, q nanotorus. Then, one has 

NIRB(G) � 0.6916877p + 0.691687q + 1.42373975. (18) 

Proof. By definition 

� (6pq − 5p − 5q + 4)9(1/2) − 9(1/2)2 + 4(p + q − 2)9(1/2) − 8(1/2)2 + 2(p + q + 2)8(1/2) − 8(1/2)2 

+ 4(p + q − 2)8
(1/2) 

− 6
(1/2)2 

+ 88
(1/2) 

− 5
(1/2)2 

+ 45
(1/2) 

− 5
(1/2)2 

� 0.118336p + 0.118336q − 0.236672 + 0.573351p + 0.57351q − 1.146703 + 2.8071475 

NIRB(G) � 0.6916877p + 0.691687q + 1.42373975. 

 

 

 

 

□ 

3. The GTUC [p, q] Nanotube, (p, q > 1) 

GTUC[p, q] nanotubes are carbon allotropes with a nano- structure  whose  length-to-diameter  ratio  can  exceed 

Theorem 12. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

NAL(G) � 12q. 

 
Proof. Based on the definition given below, one has 
1,000,000. These cylindrical carbon molecules have unique features that could make them valuable in a variety of 

nanotechnology applications. They have remarkable me- 

NAL 

 (G) �  δu 

– chanical characteristics, such as high toughness and high elastic modulus, and are formal derivatives of the graphene 

sheet. They display both semiconducting and metallic be- havior, which encompasses the entire range of qualities 

necessary for technology. The properties of GTUC[p, q] are still being studied extensively, and scientists have only 

just started to explore their potential. Without a doubt, carbon nanotubes are a substance with enormous potential 

that may 
lead to advancements in a new generation of gadgets, electric 

� (6pq − 5q)|9 − 9| + 4q|9 − 8| 

+ 2q|8 − 8| + 4q|8 − 6| 

� 4q + 4q(2) 

� 4q + 8q NAL(G) � 12q. 

 

 

□ 

machinery, and biosectors. In GTUC p, q as shown in Figure 2, the number of vertex sets and edge sets in a nanotorus 
is 4pq + 4q and 6pq + 5q. In Table 3, we have shown the neighborhood edge partitions of GTUC[p, q]. 

 

 

NIRL(G) �  ln δu − ln δv 

Theorem 13. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

NIRL(G) � 1.62186029p. 

 

Proof. By definition 

� (6pq − 5p)|ln 9 − ln 9| + 4p|ln 9 − ln 8| + 2p|ln 8 − ln 8| + +4p|ln 8 − ln 6| 

� 4p(0.117783) + 4p(0.287682) 

uvϵE 

uv∈E 



Review of International Geographical Education                               ©RIGEO, Volume 8 (2) June 2018  

409 

 

2 2 

2 2 

� 0.471132p + 1.15072829p NIRL(G) � 1.62186029p. 

 

Theorem 15. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

NIRRT (G) � 6p. 

 

 

 

FIGuRE 2: The GTUC [p, q] nanotube with q � 5 and p � 4. 

 4q 

 

Proof. By definition Proof. By definition 
 

NIRRT 

NIRF(G) �  ( δu − δv
2
 

� (6pq − 5p)(9 − 9)
2
 

+ 4p(9 − 8)
2
 

� (6pq − 5p) 
2 

|9 − 9| + 4p 
2 

|9 − 8| 

+ 2p(8 − 8) + 4p(8 − 6) 

 

� 4p(1) + 4p(2) 
+ 2p 

2 
|8 − 8| + 4p 

2 
|8 − 6| 

� 2p + 4p NIRRT(G) � 6p. 

� 4p + 16p 

NIRF(G) � 20p. 
□

 

□ Theorem 17. Let G ∈ GTUC[p, q] nanotorus. Then, one has 
NIRA(G) � 0.0185096876p. 

Theorem 16. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

NIRF (G) � 20p. 

Proof. By definition 
 

 

 

N (G) �  δ
(− 1/2) 

− δ
(− 1/2)2 

IRA 

uvϵE 

� (6pq − 5p)9
(− 1/2) 

− 9
(− 1/2)2 

+ 4p9
(− 1/2) 

− 8
(− 1/2)2 

+ 2p8
(− 1/2) 

− 8
(− 1/2)2 

+ 4p8
(− 1/2) 

− 6
(− 1/2)2 

� 4p(0.33333 − 0.353553) + 4p(0.353553 − 0.408218) 

� 0.0065435156p + 0.011966172p NIRA(G) 

� 0.0185096876p. 

 

Theorem 18. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

uvϵE 
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 _ 

NIRDIF (G � 3.2776p. 

 

 
 

Proof. By definition 

2p
8
 

4p
8 

− 
6
 

9 
− 

� 4p(1.125 − 0.8889) + 4p(1.3333 − 0.75) 

� 0.9444p + 

2.33332p NIRDIF(G � 3.2776p. 

◻ 
Theorem 19. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

NIRLF (G) � 1.626105p. 

Based on the proof of Theorem 19, it is easy to calculate the following result. ◻ 

Proof. By definition 

NIRLF(G) �  

Corollary 20. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

NLA(G) � 1.61344596639p. 

Theorem 21. Let G ∈ GTUC[p, q] nanotorus. Then, one has 
NIRDI G) � 7.167037155p. 

� (6pq − 5p) √
9 × 

_
9 

+ 4p √
9 × 8

 

Proof. By definition 

 |8 − 8|  |8 − 6| 

+ 2p √
8 × 

_
8 

+ 4p √
8 × 6

 (26) 

 1  2 

� 4p √_
7

_
2  

+ 4p √
48

 

� 0.4714045p + 1.1547005p NIRLF(G) � 1.626105p. 

 

 

NIRDIG) �  ln 1 +δu − δv 

� (6pq − 5p)ln(1 +|9 − 9|) + 4pln(1 +|9 − 8|) + 2pln(1 +|8 − 6|) 

� 4pln(1 + 1) + 4pln(1 + 2) 

� 4pln2 + 4pln3 NIRDIG) � 2.772588p + 

4.394449p NIRDIG) � 7.167037155p. 

 

Theorem 22. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

NIRGA(G) � 8.048390284p. 

 

 TABlE 4: Comparison of the neighborhood topological indices of TUC4C8[p, q].     [p, q] NAL

 NIRL NIRRL NIRF NIRA NIRDIF NIRLF NLA NIRDI NIRGA NIRB 

[1, 1] 24 5.38 12 72 0.070 7.79 3.791 3.69 11.09 0.22 2.80 
[2, 2] 48 8.62 24 112 0.097 14.35 7.04 6.91 25.42 0.318 4.15 

uvϵE 

uvϵE 
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 _ 

[3, 3] 72 11.86 36 152 0.12 20.91 10.29 10.14 39.75 0.41 5.57 

[4, 4] 96 15.11 48 192 0.15 27.46 13.55 13.37 54.09 0.51 6.95 

[5, 5] 120 18.35 60 232 0.179 34.02 16.80 16.59 68.42 0.60 8.34 

[6, 6] 144 21.600 72 272 0.20 40.57 20.05 19.82 82.76 0.70 9.72 
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FIGuRE 3: Comparison of the neighborhood topological indices of TUC4C8[p, q]. 
 

Proof. By definition 

NIRGA(G) �  

ln |δu + δv 
 

 

2 δuδv 

Theorem 23. Let G ∈ GTUC[p, q] nanotorus. Then, one has 

NIRB(G) � 0.6921229p. 

Proof. Based on the definition given below, one has 

 17  14 

� 4pln 
2

√
72 

+ 4pln 
2
√

48
 

� 4.0069384p + 4.0414518p NIRGA(G) � 8.048390284p. 

 

� (6pq − 5p)9
(1/2) 

− 9
(1/2)2 

+ 4p9
(1/2) 

− 8
(1/2)2 

+ 2p8
(1/2) 

− 8
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� 4p(0.0294372) + 4p(0.14359353) 

� 0.1177488p + 0.5743741p NIRB(G) � 

0.6921229p. 

 

 

 TABlE 5: Comparison of the neighborhood topological indices of GTUC[p, q].     [p, q] NAL

 NIRL  NIRRL NIRF NIRA NIRDIF NIRLF NLA NIRDI NIRGA NIRB 

[1, 1] 12 1.62 6 20 0.06 3.27 1.62 1.613 8.04 8.04 0.69 
[2, 2] 24 3.24 12 40 0.03 6.55 3.24 3.22 14.33 16.09 1.38 

[3, 3] 36 4.86 18 60 0.05 9.83 4.86 4.84 21.50 24.14 2.07 
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[4, 4] 48 6.48 24 80 0.07 13.11 6.48 6.45 28.66 32.19 2.76 

[5, 5] 60 8.10 30 100 0.09 16.38 8.10 8.06 35.83 40.24 3.46 

[6, 6] 72 9.73 36 120 0.11 19.66 9.73 9.73 43.00 48.29 4.15 
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4. Discussion and Conclusion 

We wrap up our work in this section with a few key points. In Section 2, we created the TUC4C8[p, q] nanotube structures for 

p, q > 1. We produced the neighborhood edge partitions indicated in Table 2 based on Figures 1(a) and 

1(b). We calculated the neighborhood irregularity topo- logical indices using these neighborhood edge partitions. Additionally, 

Table 4 and Figure 3 provide numerical and visual comparisons of all taken into account neighborhood topological indices 

which establishes a positive link between p, q, and these topological indices. In other words, topo- logical indices rise in value 

as the values of p and q increase. It is clear from this comparison that the NIRF index value is higher than the values of the other 

topological indices. 

In Section 3, we built the GTUC [p, q] nanotube structures for p, q > 1. Using Figure 2, we came up with the neighborhood edge 

partitions that are displayed in Table 3. These neighbor- hood edge partitions allowed us to calculate the irregularity of topological 

indices. Additionally, Table 5 and Figure 4 provide numerical and visual comparisons of all taken-in topological indices which 
shows that there is a positive correlation between p, q, and these topological indices; as p and q rise, the topological indices’ values rise as 

well. It is clear from this comparison that 

the NIRF index value is higher than the values of the other topological indices. 

The application of distance-based topological indices presents increased challenges and complexity; however, they can be 

utilized in conjunction with existing methods. The explo- ration of such studies will be the focal point of future research. 
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